Category Archives: Abstracts

Best Of AAST #3: When To Place A Chest Tube For Hemothorax

There is an art to deciding when to place a  chest tube for either hemothorax or pneumothorax. For the most part, the trauma professional examines the imaging and then uses some unknown internal metric to declare that it is “too big.” Then it’s time to insert some type of chest drain.

There have been attempts over the years to make this decision more quantitative. One of the better-known ones is the 2-cm rule for pneumothorax. If the distance from the chest wall to the lung on the chest x-ray is >2cm, it is “too big.”

But what about hemothorax? The Medical College of Wisconsin trauma group performed a retrospective review of 391 patient charts to test a new 300cc rule defining when a hemothorax is “too big.” This guideline was implemented in 2018-2019, and patients presenting before implementation were compared to those arriving after.

The 300cc threshold is determined by using Mergo’s formula for calculating the volume of a square prism. Obviously, this requires a CT scan for calculation, so patients who had a tube placed before scanning or did not have one were excluded. They were also excluded from the study if their pneumothorax met the 2-cm rule. The authors studied how many patients could be observed, how many needed tube drainage, observation failure, and later need for a VATS procedure or thoracotomy.

Here are the factoids:

  • About 60% of the study group was admitted after the new criteria were implemented, and both groups were demographically similar
  • After implementation, the number of patients that were just observed increased significantly from 52% to 71%
  • Of course, this means that the number of chest tubes inserted was significantly less (42% vs. 61%)
  • There was no difference in observation failure (delayed placement of a tube), 18% vs. 24%
  • There were also no differences in pulmonary complications, 30-day readmissions, or 30-day mortality
  • The average ICU and hospital length of stays were significantly shorter as well

The authors concluded that implementing their 300cc guidelines correlated with decreased length of stay and no increase in failure or complication rates.

Bottom line: Although this is a relatively small series, the differences between the groups quickly achieved significance. There are three major questions that I have. First, how was the 300cc threshold arrived at? Was this borne of clinical judgment, or did some previous work suggest it?

My next question has to deal with the accuracy of the volume calculation. Mergo’s formula was used to determine the volume of a rectangular solid. As we all know, hemothoraces and pneumothoraces are not cubes. They can be very irregular and influenced by patient position. However, I did find a paper from the University of Florida that found the correlation coefficient between the volume calculated by Mergo’s formula vs. using 3-D software estimation was 0.9, which is excellent. So this approximation appears to be a very good one.

Finally, using the 300cc rule is predicated on getting a CT scan. Does every patient need a chest CT? Part of the resuscitation process for major trauma involves obtaining a chest X-ray. The obviously large hemothorax can justify inserting a chest tube at that point. But the reality is that most of these patients do go on to chest CT, so this is a minor change in practice for most. 

Although I love to see confirmatory studies before practice changes, this one study can lead us to change our practice guidelines now. It is a relatively minor one and will allow us to avoid placement of a few more chest tubes and to shave off a few days of hospital stay. The logical follow-up study for the authors is to extend the post-discharge window for complications to 60 or 90 days to ensure that delayed procedures were not required in the observation group.

References:

  • Implementing the 300-cc rule safely decreases chest tube placement in traumatic hemothorax. AAST 2023 Plenary paper #22.
  • New formula for quantification of pleural effusions from computed tomography. J Thorac Imaging. 1999 Apr;14(2):122-5. 

 

Best of AAST 2023 #2: Immediate Postoperative Prosthesis

Blunt vehicular trauma is the most common cause of severe lower extremity trauma, particularly motorcycle crashes. Occasionally, the injury is so severe that the limb cannot be saved, and amputation is necessary. The conventional treatment is to protect the amputation incision, provide physical therapy, and fit a prosthesis once the stump is mature. This typically takes a month or two.

Unfortunately, losing any limb has a significant psychological impact on our patients’ physical and mental well-being. The concept of immediate postoperative prosthesis (IPOP) has been gaining traction in recent years in an attempt to improve early mobility and mental health among these amputees.

A group from India designed a randomized, controlled trial to compare patients undergoing IPOP after lower extremity amputation to those receiving conventional prosthetic treatment. They randomly enrolled 30 patients in each group and measured differences in quality of life, depression and anxiety, and various mobility scores.

Here are the factoids:

  • Both groups were modestly injured, with 85% having ISS < 15; this indicates that injuries were mostly limited to the extremity
  • Mangle extremity severity score was also low, indicating the incidence of vascular and severe soft tissue injury was also low
  • Quality of life scores for the physical, psychological, social, and environmental domains were significantly higher in the IPOP group
  • The Amputee Mobility Predictor score (AMP) was significantly higher after 12 weeks after IPOP
  • The Trinity Amputee Prosthesis Experiences Scales (TAPES) for psychosocial, activity restriction, and prosthetic satisfaction domains were significantly better in the IPOP group
  • The physical screening tests for directional control and overall stability were also significantly higher in IPOP patients

The authors concluded that IPOP improves quality of life, decreases depression and anxiety, and increases mobility in amputees compared to standard therapy.

Bottom line: It is common sense that allowing early mobility would help our patients, both physically and mentally. This paper makes it clear that IPOP makes a very real difference. This small study bears additional confirmatory work, but given the level of significance found, the concept will likely be proven.

It does take some extra effort to apply a well-fitted early prosthesis. This typically takes place in the OR. The prosthesis must be easy to remove for wound care and protect the stump from injury while weight-bearing.  It is best done by an orthopedic surgeon and skilled prosthetist at the end of the amputation procedure. 

Hopefully, this concept will catch on to help patients with this potentially devastating procedure recover more quickly and retain their mental health.

Reference: RCT to study the effect of immediate post-operative prosthesis vs. conventional prosthesis on balance & QOL in BK amputees following trauma. AAST 2023, Plenary paper #21.

Best of AAST #1: Aspirin Vs Low Molecular Weight Heparin For VTE Prophylaxis

The 82nd Annual Meeting of the American Association for the Surgery of Trauma begins next week. As is my custom, I will be reviewing some of the more interesting (to me) oral presentation abstracts until the last day of the meeting.

When reading abstracts, keep in mind that you are seeing just a snippet of a finished manuscript. The authors are given very little print space to fully describe their research idea, their methods, and their results’ significance. Sometimes, what is seen in the abstract varies significantly from what is actually heard at the meeting. But mercifully, this does not happen often. The abstract is usually an intriguing look at some new and exciting work.

Having said all that, an abstract should not be a reason to change your practice! It is usually early work and needs to be fully vetted at peer review. Even then, it needs to be taken in context with past, similar research before trickling down to patient care.

The first abstract is fascinating. Our orthopedic surgery colleagues have been trying to use aspirin for venous thromboembolism (VTE) prophylaxis for decades. Frequently, they are thwarted by the trauma surgeons, who are thoroughly indoctrinated in the low molecular weight heparin (LMWH) camp.

This work comes from the Shock Trauma Center in Baltimore and is a follow on to a paper published in the New England Journal of Medicine earlier this year. The paper demonstrates that aspirin is not inferior to LMWH when used for VTE prophylaxis of patients. There was no difference in death from all causes, VTE occurrence, wound complications, or bleeding events.

The abstract is a follow-on to that manuscript. The authors performed a secondary analysis of the initial data to see if aspirin provided the same apparent level of protection in patients with high risk for VTE as measured by the Caprini score.

Here are the factoids:

  • A total of 12,211 patients were enrolled in this multi-center, and the same outcomes listed above were monitored for 90 days
  • Of the total group, 3052 were judged to be high risk: 46% had a femur fracture, 42% had a pelvic/acetabular fracture, 48% had a thoracic injury, 39% had a spinal injury, and 35% had a head injury
  • There was no difference in death, deep venous thrombosis, pulmonary embolism, or bleeding in the two groups
  • Patient-reported satisfaction was significantly better by 68% in the aspirin group

The authors concluded that outcomes for aspirin vs. LMWH are similar, even in patients at high risk for VTE.

Bottom line: This is an intriguing abstract, pointing me to the original paper published in NEJM. This multi-center study was performed in conjunction with the research coordinating center at Johns Hopkins, which designs some top-notch research. This study was no exception.

I am fascinated with this work because it shows that our orthopedic colleagues were right! They’ve been trying to get us to use aspirin for a long time. It’s very cheap compared to LMWH, by a ratio of about 50,000:1. 

If you’ve followed me for a long time, you would know I have been skeptical of the VTE prophylaxis establishment. Looking historically at its evolution over the last 40+ years, the incidence of DVT and fatal PE have changed very little despite the introduction of heparin, low molecular weight heparin, and anti Factor Xa monitoring. But it’s been established practice, so we’ve had to abide by the rules. Now, a cheaper alternative to all of this is being shown to be just as (in)effective. 

I suspect that if others bear out this work, we will be able to use a cheaper prophylaxis drug that does not require injection. But we still need to work on figuring out the basis for this problem to hopefully reduce it to near zero someday.

References: 

  • Risk-stratified thromboprophylaxis effects of aspirin versus low-molecular-weight heparin in orthopaedic trauma patients. AAST 2023 Plenary Paper 3.
  • Aspirin or Low-Molecular-Weight Heparin for Thromboprophylaxis after a Fracture. N Engl J Med 2023; 388:203-213.

Best Of EAST 2023 #12: VTE Prophylaxis In Severe TBI

Time for another abstract on venous thromboembolic disease (VTE) prophylaxis, but this time in patients with severe head injury. VTE is a significant problem for trauma patients. Those with a potential source of bleeding from their injuries cause us to hesitate and consider the timing of chemical prophylaxis closely. Do we really want to cause more bleeding?

This is particularly problematic with intracranial hemorrhage, as the treatment is major brain surgery. Over recent years, the literature has been leaning toward earlier prophylaxis as soon as the intracranial blood has stopped evolving.

The EAST Multicenter Trials Group performed a seven-year retrospective review at 24 Level I and II trauma centers to assess the safety and efficacy of VTE chemoprophylaxis.  They divided patients into three groups: no prophylaxis, early prophylaxis (within 24 hours), and late prophylaxis (after 24 hours).

The authors assessed two endpoints: VTE occurrence and expansion of intracranial hemorrhage (ICH). They used several regression models to check their hypotheses.

Here are the factoids:

  • A total of 2,659 patients met the inclusion criteria. This averages out to 15 eligible patients per month per center. This is probably reasonable when combining a few high-volume centers with more lower volume centers.
  • Compared to early prophylaxis, patients who received late prophylaxis were twice as likely to develop VTE, although this was not statistically significant (p = 0.059)
  • Compared to early prophylaxis, patients who received no prophylaxis were a third less likely to develop VTE, although this, too, was not statistically significant (p = 0.39
  • About 25% of patients who received either early or late prophylaxis suffered an extension of their ICH, but only 17% of the no-prophylaxis group did
  • The regression model showed that the no prophylaxis group was 36% less likely to develop ICH extension compared to either early or late prophylaxis groups.

The workgroup concluded that the development of VTE was not dependent on the timing of the start of prophylaxis. Furthermore, patients who did not receive any prophylaxis had significantly decreased odds of ICH extension. The group recommended larger randomized studies to extend this work.

Bottom line: Shocker! This multicenter study suggests that the no prophylaxis and early prophylaxis groups had fewer VTE events than the late group, although these results were not statistically significant. This means that there wasn’t an advantage to giving the shot.

And the other major conclusion was that both early and late prophylaxis was associated with a significantly higher incidence of ICH extension. 

Roll these together, and you will find that neither early nor late prophylaxis help prevent VTE, yet they are both associated with additional bleeding in and around the brain! 

Heresy! I am trying to figure out what to make of these results. Perhaps the retrospective nature of the study and the wildcards this introduces influenced the results. It could be a study power problem, except the numbers were approaching significance that was unfavorable for prophylaxis.

I will be very interested to hear how the authors explain these findings. And yes, a well-powered randomized study would be great, but I don’t think many institutional review boards will be keen on a no-treatment group given our current fear of VTE. So don’t count on any real answers soon.

Reference: EARLY VTE PROPHYLAXIS IN SEVERE TRAUMATIC BRAIN INJURY: A PROPENSITY SCORE WEIGHTED EAST MULTICENTER TRIAL. EAST 2023 Podium paper #38.

Best Of EAST 2023 #11: Prehospital Use Of TXA

More stuff on TXA! I published two posts back in December on TXA hesitancy. This Friday, the trauma group at Wake Forest is presenting an abstract on TXA use by prehospital trauma professionals.

It is very likely that EMS carries tranexamic acid (TXA) in your area. Each agency has its own policy on when to administer, but the primary indication is hemorrhagic shock. A few ALS services may infuse for serious head injury as well.

The Wake Forest group was concerned that TXA administration might be occurring outside of the primary indication, hemorrhagic shock. They reviewed their experience using a six-year retrospective analysis of their trauma registry. The patients’ physiologic state before and after arrival at the hospital was assessed, as were the interventions performed in both settings.

Here are the factoids:

  • Of 1,089 patients delivered by 20 EMS agencies, one-third (406) had TXA initiated by EMS
  • Only 58% of patients who received prehospital TXA required transfusion after arrival
  • TXA administration based on BP criteria were as follows:
  • Similar compliance was noted when examining only high-volume EMS services

The authors concluded that TXA use is common in the prehospital setting but is being used outside of literature-driven indications.

Bottom line: This is an interesting snapshot of TXA use surrounding a single Level I trauma center. As such, it can’t be automatically applied to all. However, my own observations suggest that this drug is being used more liberally nationwide.

Clearly, the prehospital providers are starting TXA on patients who do not fit the category of severe hemorrhagic shock. Only 30% of patients receiving it had SBP < 90. Is this a bad thing? Referring back to my conversation on TXA hesitancy, I think not. But do keep in mind that giving any drug when not indicated adds no benefit and can certainly increase risk. The good news is that TXA is very benign when it comes to side effects.

However, policies are designed for a reason: safety. And if the EMS agency policy says to give TXA only for SBP < x, then that’s when it should be given. The prehospital PI process (or the trauma center’s) should identify variances and work to correct them. If EMS is “overusing” TXA in your area, your trauma center should add this as a new prehospital PI filter and let them know when it happens.

Here are my questions and comments for the presenter/authors:

  • Is using the need for transfusion a valid measure of the need for TXA? You found that half of the patients receiving TXA were not transfused. The decision to transfuse depends on surgeon preference, and they don’t always use objective criteria. And hey! Maybe the TXA worked, obviating the need for blood!

This is a straightforward and intriguing paper. I’m excited to hear more details on how you sliced and diced this data.

Reference: ARE DATA DRIVING OUR AMBULANCES? LIBERAL USE OF TRANEXAMIC ACID IN THE PREHOSPITAL SETTING. EAST 2023 Podium paper #34.