Tag Archives: TXA

Are You A TXA Believer, Or TXA Hesitant?

I’ve visited several hundred trauma centers over the past 25 years, and recently I’ve begun to appreciate that there are two camps when it comes to the use of tranexamic acid: the TXA believers and the TXA hesitant.

There have been a number of large studies that seem to suggest a benefit with respect to survival from major hemorrhage, particularly if given soon after injury (CRASH-2, MATTERs). This drug is dirt cheap and has been around a long time, so it has a clearly defined risk profile.

However, many of those hesitant to use it point to the possibility of thromboembolic events that have been sporadically reported. Several years ago, I did my own literature review and found that the number of thrombotic events from TXA was nearly identical to that of transfusing plasma.

JAMA Surgery just published a large systematic review, meta-analysis, and meta-regression that sought to examine the association between thromboembolic events (TE) in patients of any age and involving all medical disciplines, not just trauma.

The anesthesia group at the University Hospital Frankfurt in Germany did a systematic search of the Cochrane Central Register of Controlled Trials, as well as MEDLINE, for randomized controlled trials involving TXA. They covered all published studies through December 2020.

The authors adhered to standard guidelines for con-ducting reviews and meta-analysis (PRISMA). They specifically searched for outcomes involving TEs, such as venous thromboembolism, myocardial infarction or ischemia, limb ischemia, mesenteric thrombosis, and hepatic artery thrombosis. They also tallied the overall mortality, bleeding mortality, and non-bleeding mortality.

Here are the factoids:

• A total of 216 eligible trials were identified that included over 125,000 patients

• Total TEs in the TXA group were 1,020 (2.1%) vs 900 (2.0%) in the control group

• Studies at lowest risk for selection bias showed similar results

Bottom line: The authors concluded that IV TXA, irrespective of the dose, does not increase the risk of thromboembolic events. Period.

Hopefully, this is the final study needed to convince the TXA hesitant that it is safe to administer. They may still argue the efficacy, but at less than $100 per vial it is becoming impossible to ignore.

Reference: Association of Intravenous Tranexamic Acid
With Thromboembolic Events and Mortality A Systematic Review, Meta-analysis, and Meta-regression. JAMA Surgery 156(6):3210884, 2021.

TXA, Thromboembolic Events, And Mortality

I’ve visited several hundred trauma centers over the past 25 years, and recently I’ve begun to appreciate that there are two camps  when it comes to the use of tranexamic acid: the TXA believers and the TXA hesitant.

There have been a number of large studies that seem to suggest a benefit with respect to survival from major hemorrhage, particularly if given soon after injury (CRASH-2, MATTERs). This drug is dirt cheap and has been around a long time, so it has a clearly defined risk profile.

However, many of those hesitant to use it point to the possibility of thromboembolic events that have been sporadically reported. Several years ago, I did my own literature review and found that the number of thrombotic events from TXA was nearly identical to that of transfusing plasma.

JAMA Surgery just published a large systematic review, meta-analysis, and meta-regression that sought to examine the association between thromboembolic events (TE) in patients of any age and involving all medical disciplines, not just trauma.

The anesthesia group at the University Hospital Frankfurt in German did a systematic search of the Cochrane Central Register of Controlled Trials, as well as MEDLINE, for randomized controlled trials involving TXA. They covered all published studies through December 2020.

The authors adhered to standard guidelines for conducting reviews and meta-analysis (PRISMA). They specifically searched for outcomes involving TEs, such as venous thromboembolism, myocardial infarction or ischemia, limb ischemia, mesenteric thrombosis, and hepatic artery thrombosis. They also tallied the overall mortality, bleeding mortality, and non-bleeding mortality.

Here are the factoids:

  • A total of 216 eligible trials were identified that included over 125,000 patients (!)
  • Total TEs in the TXA group were 1,020 (2.1%) vs 900 (2.0%) in the control group
  • Studies at lowest risk for selection bias showed similar results

Bottom line: The authors concluded that IV TXA, irrespective of the dose, does not increase the risk of thromboembolic events. Period.

Hopefully, this is the final study needed to convince the TXA hesitant that it is safe to administer. They may still argue the efficacy, but at less than $100 per vial it is becoming impossible to ignore.

Reference: Association of Intravenous Tranexamic Acid With Thromboembolic Events and Mortality A Systematic Review, Meta-analysis, and Meta-regression. JAMA Surgery 156(6):3210884, 2021.

The July 2021 Trauma MedEd Newsletter Is Live! Yet More Potpourri

I’ve put together another issue of miscellaneous, interesting stuff!

In this issue, learn about:

  • The effect of ambulance deceleration on ICP in head injury patients
  • An interesting technique for sealing vacuum systems applied around external fixators
  • An analysis of thrombotic events following TXA administration
  • The utility of a second head CT in patients taking DOACs

To download the current issue, just click here!

Or copy this link into your browser: https://www.traumameded.com/courses/more-potpourri-july-21/

This newsletter was released to subscribers over a week ago. If you would like to be the first to get your hands on future newsletters, just click here to subscribe!

 

The April 2021 Trauma MedEd Newsletter Is Live! Potpourri

This issue is devoted to an uncommon yet potentially devastating problem, blunt carotid and vertebral artery injury.

In this issue, learn about:

  • Who’s Better At Invasive Procedures? Advanced care providers or residents?
  • How Many Salt Tabs In A Liter Of Saline?
  • Mainstem Intubation In Pediatric Patients
  •    And How To Avoid It!
  • Giving TXA Via An Intraosseous Line?

To download the current issue, just click here!

Or copy this link into your browser: https://bit.ly/TME202104

This newsletter was released to subscribers over a week ago. If you would like to be the first to get your hands on future newsletters, just click here to subscribe!

Best Of The AAST #7: TXA And Thromboembolism

The use of tranexamic acid (TXA) in trauma patients has escalated dramatically since the CRASH-2 trial was published ten years ago. It has become a frequent addition to the massive transfusion protocols used by trauma centers. And we are now even seeing TXA given by prehospital provides when life-threatening bleeding is suspected.

This drug is popular because it is inexpensive (~$100/dose) and is thought to be safe. However, some trauma professionals have been concerned about thrombotic side effects since TXA is a finbrinolysis inhibitor.

The group at the Mayo Clinic performed a retrospective study of seven years of their own data to determine if the concern for thrombotic complications was warranted. They specifically evaluated in-hospital mortality and thrombotic events up to 28 days after injury.  They also scrutinized outcomes in patients who received only the bolus TXA injection, but not the infusion.

Here are the factoids:

  • A total of 848 patients were included in the study, but there was no information as to what the inclusion criteria were
  • Only 212 received TXA; the other 636 were considered the control group, and there were no differences in age, sex or mechanism of injury
  • Thrombotic events occurred in 13% of the TXA patients and only 6% in the control group, which was statistically significant
  • Specific thrombotic events in TXA vs non-TXA patients: DVT was 8.5% vs 3.5% (significant), pulmonary embolism was 3.8% vs 1.9% (NS), MI was 1.9 vs 0.4% (NS), stroke was 2.4% vs 1.1% (NS)
  • Thrombotic events occurred more frequently in patients who received both doses of TXA (23%) vs just the bolus (10%), and this was also significant
  • In-hospital mortality was 21% with TXA vs 10%, which was not significantly different, controlling for confounders

The authors concluded that TXA administration was associated with higher rates of thrombotic events. They went on to state that TXA should not be routinely given for trauma patients in the community setting.

Here are my comments:

This is a bold recommendation from this very small study. The CRASH-2 trial was randomized and placebo controlled, and analyzed their experience with 10,000 subjects in each arm. This retrospective study has only  212 TXA vs 636 control patients. Big difference.

The authors attempt to match the TXA patients with controls. They controlled for age, sex, mechanism, and ISS. But it does not appear that there was any control for injuries known to increase the risk of thrombotic events like spine and pelvic fractures.

And why look at a full 28 day interval for thrombotic events? I would expect most of these events to occur in the first few days. Including an entire month in the study allows thrombotic events from other causes to creep in.

Here are some questions for the presenter and authors:

  • Please comment on how the small numbers in your study may have an impact on the results.
  • What were the selection criteria for your 848 patients? Were they all of your trauma activation patients? If not, is there some selection bias possible?
  • DVT appears to be the driver for your “significant” number of thrombotic events. Yet the other events (MI, stroke, PE) were not significantly different. This seems counter-intuitive, since the DVT numbers themselves numbered only about 20 in each group. Please describe the statistics you used to derive this conclusion.
  • Did you look at the incidence of injuries that are known to increase the risk of thrombotic events in the two groups? If there was an excess of pelvic or spine fractures in the TXA group, this might not be picked up in your analyses and could skew your data.
  • Why did you include thrombotic events for a full 28 days after injury? This allows for later events caused by factors other than the TXA. Show us a redo of your analysis using 5 or 7 day thrombotic events.

These are interesting numbers, but I have to admit that I am skeptical. I’m not clear how community hospital administration of TXA makes it more likely associated with thrombotic events. I will definitely be listening intently to this presentation. And probably asking these questions.

Reference: Risk of thromboembolic events after the use of TXA in trauma patients. AAST 2020, Oral Abstract #15.