Tag Archives: Prophylaxis

Best Of EAST 2023 #12: VTE Prophylaxis In Severe TBI

Time for another abstract on venous thromboembolic disease (VTE) prophylaxis, but this time in patients with severe head injury. VTE is a significant problem for trauma patients. Those with a potential source of bleeding from their injuries cause us to hesitate and consider the timing of chemical prophylaxis closely. Do we really want to cause more bleeding?

This is particularly problematic with intracranial hemorrhage, as the treatment is major brain surgery. Over recent years, the literature has been leaning toward earlier prophylaxis as soon as the intracranial blood has stopped evolving.

The EAST Multicenter Trials Group performed a seven-year retrospective review at 24 Level I and II trauma centers to assess the safety and efficacy of VTE chemoprophylaxis.  They divided patients into three groups: no prophylaxis, early prophylaxis (within 24 hours), and late prophylaxis (after 24 hours).

The authors assessed two endpoints: VTE occurrence and expansion of intracranial hemorrhage (ICH). They used several regression models to check their hypotheses.

Here are the factoids:

  • A total of 2,659 patients met the inclusion criteria. This averages out to 15 eligible patients per month per center. This is probably reasonable when combining a few high-volume centers with more lower volume centers.
  • Compared to early prophylaxis, patients who received late prophylaxis were twice as likely to develop VTE, although this was not statistically significant (p = 0.059)
  • Compared to early prophylaxis, patients who received no prophylaxis were a third less likely to develop VTE, although this, too, was not statistically significant (p = 0.39
  • About 25% of patients who received either early or late prophylaxis suffered an extension of their ICH, but only 17% of the no-prophylaxis group did
  • The regression model showed that the no prophylaxis group was 36% less likely to develop ICH extension compared to either early or late prophylaxis groups.

The workgroup concluded that the development of VTE was not dependent on the timing of the start of prophylaxis. Furthermore, patients who did not receive any prophylaxis had significantly decreased odds of ICH extension. The group recommended larger randomized studies to extend this work.

Bottom line: Shocker! This multicenter study suggests that the no prophylaxis and early prophylaxis groups had fewer VTE events than the late group, although these results were not statistically significant. This means that there wasn’t an advantage to giving the shot.

And the other major conclusion was that both early and late prophylaxis was associated with a significantly higher incidence of ICH extension. 

Roll these together, and you will find that neither early nor late prophylaxis help prevent VTE, yet they are both associated with additional bleeding in and around the brain! 

Heresy! I am trying to figure out what to make of these results. Perhaps the retrospective nature of the study and the wildcards this introduces influenced the results. It could be a study power problem, except the numbers were approaching significance that was unfavorable for prophylaxis.

I will be very interested to hear how the authors explain these findings. And yes, a well-powered randomized study would be great, but I don’t think many institutional review boards will be keen on a no-treatment group given our current fear of VTE. So don’t count on any real answers soon.

Reference: EARLY VTE PROPHYLAXIS IN SEVERE TRAUMATIC BRAIN INJURY: A PROPENSITY SCORE WEIGHTED EAST MULTICENTER TRIAL. EAST 2023 Podium paper #38.

Best Of EAST 2023 #10: Early VTE Prophylaxis In Adolescents With Solid Organ Injury

Chemoprophylaxis against venous thromboembolism (VTE) is routine in trauma care. In most cases, it can be initiated shortly after admission in most trauma patients. However, there are a few major exceptions, including eye injuries and brain injuries with intracranial hemorrhage.

Solid organ injury used to be cause for concern when considering prophylaxis, but most trauma centers are now comfortable beginning within 24 to 48 hours after injury. Having said that, those numbers are for adult patients. What about the younger ones?

The University of California Irvine group queried the TQIP database (3 recent years) to examine outcomes for adolescent patients (12-17 years old) given VTE prophylaxis after injury to liver, spleen, and/or kidney. They excluded patients who had TBI, anticoagulation or coagulopathy, immediate laparotomy, transfers in, and patients who died or were discharged within 48 hours. They matched patients for age, comorbidities, grade of injury, overall severity of injury, and hypotension/need for transfusion.

Eligible patients who received chemoprophylaxis early  (within 48 hours) vs. late were reviewed to identify any differences in complications, length of stay, failed non-op management, and mortality.

Here are the factoids:

  • A total of 1,022 cases were isolated from the TQIP database, and 417 adolescent cases were matched to adults
  • VTE rate was statistically the same, 0.6% in the early group vs. 1.7% in the delayed group
  • Failed non-op management was identical at 5.9% vs. 5.6%
  • There was one death in the delayed group and none in the early group (not significant)
  • ICU LOS was the same at 3-4 days
  • One item not mentioned in the body of the abstract: hospital length of stay was significantly longer in the early group: 9 days vs. 6 days

The authors concluded that early VTE prophylaxis in adolescent trauma patients did not increase failure of nonoperative management, nor did it decrease the incidence of VTE.

Bottom line: This is a study that needed to be done. Due to IRB restrictions, it is typically more challenging to perform actual studies on children and adolescents. Retrospective use of databases helps overcome this problem, although it always introduces a few unwanted wrinkles.

We frequently assume that adolescents behave physiologically like adults. Although often true, you can’t always count on it. Those of us who take care of children and young adults know that they tend to do better than adults by most measures. But again, this is an assumption and needed to be studied.

This database study was limited to three years of data and only produced 417 matched cases for study. This is a small number, and I always worry about statistical power. If the results of such a study are negative, one is left wondering if a proper power analysis was done.

One puzzling result left me wondering about the power question. Patients who received early prophylaxis had exactly the same rate of VTE as those who received it late. Adult data indicates that early use should decrease this complication. Is this another indication of a statistical power problem? Would the inclusion of more patients have shown a real difference?

The other result that struck me (and was not commented upon in the body of the abstract) was the statistically significant 50% increase in hospital length of stay for the early prophylaxis group. Is there some unknown variable that was not matched that caused it? This is one of the known pitfalls of these retrospective database studies.

Here are my questions and comments for the presenter/authors:

  • Broken record question: Did you have enough cases to provide adequate statistical power? This study showed a negative result. Did you have enough matched cases to actually be able to detect a difference if there was one? Why not add a few more years of data and recalculate?
  • How do you explain the failure of early VTE prophylaxis to protect these patients from DVT or PE? Is this also a statistical power problem?
  • Why is the hospital length of stay significantly longer in the early prophylaxis group?

This intriguing paper follows my bias toward treating these patients exactly the same as adults with early chemoprophylaxis. I just need a few of the loose ends tied up.

Reference: SIMILAR RATE OF VENOUS THROMBOEMBOLISM AND FAILURE OF NON-OPERATIVE MANAGEMENT FOR EARLY VERSUS DELAYED VTE CHEMOPROPHYLAXIS IN ADOLESCENT BLUNT SOLID ORGAN INJURIES: A PROPENSITY-MATCHED ANALYSIS. EAST 2023 Podium paper #27.

How Early Can We Start Chemoprophylaxis In TBI Patients?

We’ve learned a couple of things in the last two posts by reviewing recent systematic review / meta-analysis studies. First, low molecular weight heparin provides better prophylaxis against venous thromboembolism (VTE) than unfractionated heparin. And giving prophylaxis within the first 72 hours of admission significantly decreases the incidence of VTE with no increase in existing intracranial bleeds or mortality.

So the only remaining question is, how low can you go? That is, how soon can you safely start chemoprophylaxis? The trauma group at George Washington University in DC put together a study to examine this question.

They, and one other Level I trauma center, performed a retrospective cohort study of adult, blunt TBI patients over a three year period. Patients with penetrating brain injury, and those with any other body region with significant injury (AIS >1) were excluded so this group truly represented isolated brain injury. Other exclusion criteria were progression of blood on CT within 6 hours, and crani or death within 24 hours. Early VTE prophylaxis was defined as occurring within 24 hours, and late was > 24 hours.

All patients had hourly neuro evaluations and a repeat head CT at six hours after admission. All had compression devices applied to their legs, and received either low molecular weight (LMWH) or unfractionated heparin (UH) at a fixed dose regarding of body habitus. Anti-Factor Xa levels were not measured.

Here are the factoids:

  • Between the two centers, 264 met inclusion criteria
  • About 40% received early prophylaxis and the remaining ones received their drug after 24 hours
  • ISS was higher (18 vs 15) and GCS was lower (13 vs 14) in the late therapy group
  • About 88% of patients in the early prophylaxis group received LMWH vs only 63% in the late group
  • Average time to prophylaxis start in the early group was 17 hours vs 47 hours in the late group
  • There were no differences in bleed progression between early and late groups (5.6% vs 7%)
  • The craniotomy / craniectomy rates were the same in early and late groups (1.9% vs 2.5%)
  • VTE rate was the same in early vs late groups (0% vs 2.5%)

Bottom line: The authors concluded that there was no additional risk in giving early VTE prophylaxis in TBI patients with a stable CT seven hours after arrival. This was true for patients with subdural, epidural, subarachnoid, and intraparenchymal bleeds.

But there are some limitations to consider. This was a retrospective study, and was a “how we do it” study” as well in terms of the choice of LMWH vs UH. This means there was not protocol for the form of heparin used; that was determined by surgeon preference. 

There was also a difference in ISS and GCS between groups. However, the difference may not have been clinically significant, and it could have made the late group look worse if it were. Statistically, it did not.

And finally, the numbers are small and there was no power analysis. So there is the question of whether a significant difference could have even been detected.

What does it all mean? Well, it suggests that early (within 24 hours) chemoprophylaxis does not cause harm compared to later administration. But the study is not definitive enough to change practice yet. It should definitely prompt discussions and practice guideline development for starting prophylaxis after 24 hours of CT scan stability now. And hopefully these authors (or others) are planning a better prospective study to help us start even sooner!

Reference: Early chemoprophylaxis against venous thromboembolism in patients with traumatic brain injury. Am Surgeon 88(2):187-193, 2021.

VTE Prophylaxis And TBI

There has been a tremendous amount of gnashing of teeth regarding venous thromboembolism (VTE) prophylaxis in patients with blood in their head. This means any kind of blood: subarachnoid / epidural / subdural hematomas as well as intraparenchymal hemorrhage.

Trauma professionals have traditionally been hesitant to give any type of anticoagulant to a patient who has just bled, or who may be at risk for bleeding in the very near future. This becomes even more important in areas like the brain where management is a bit more difficult and adverse events can be devastating.

For this reason, our neurosurgical colleagues frequently like to steer the ship and dictate what type of VTE prophylaxis can be given, and when. Unfortunately, much of their advice may be driven by dogma and what they learned about the subject during their training. Having studied hundreds of TQIP reports over the past few years, I’ve learned to pick out hospitals that are relying on the advice of non-trauma surgeons to direct the prophylactic regimen.

Here are two dead giveaways that something is amiss. First, look at your TQIP report table titled “Pharmacologic VTE Prophylaxis Type.”

Compare the use of unfractionated heparin vs low molecular weight heparin (LMWH). This hospital has a huge variance from the norm compared to other comparable trauma centers. This means that “someone” is dictating its use for some subset of patients.

In my experience, this is typically a neurotrauma thing. Now take a look at the TQIP table titled “Pharmacologic VTE Prophylaxis.” Specifically, look at the “Severe TBI” cohort for time to VTE prophylaxis.

It is very clear that there is a significant delay to administering VTE prophylaxis to TBI patients. These two data points indicate that there is some reluctance to giving appropriate treatment to these patients.

The literature is clear that VTE prophylaxis is important in many trauma patients, including those with serious head injury. There are three questions that need to be answered to settle on optimal care:

  1. Which chemoprophylaxis is best, unfractionated or low molecular weight heparin?
  2. Is it better to give the selected agent earlier or later?
  3. If earlier is better, how early can we give it?

I will address each of these questions in this series of posts, focusing on neurotrauma patients. In order to try to toss out dogma, the literature I cite will be recent, no more than about two years old. So join me for battle next week as we have unfractionated vs low molecular weight heparin face off.

Thanks to Jim Sargent from Beth Israel Deaconess Medical Center for suggesting this topic.

Best Of EAST #6: How Long Does Risk For VTE Last After Spine Fracture?

Most trauma centers use an existing venous thromboembolism (VTE) guideline or have developed their own injury-specific one. These include risk factors, contraindications, specific agent, and dosing recommendations. But one thing most do not include is duration of prophylaxis!

The length of time a patient is at risk for VTE is not well delineated yet. The group at the University of Arizona decided to tackle this program using the National Readmission Database. This dataset is a comprehensive resource for critically analyzing patients who are discharged and readmitted, even for multiple occurrences. It covers 30 states and almost two thirds of the population.

The authors focused on VTE occurring during the first six months after injury. Patients who died on the initial admission, were taking anticoagulants, had spinal surgery, or sustained a spinal cord injury were excluded. Over 41,000 records from the year 2017 met these criteria.

Here are the factoids:

  • The average age was 61, which shows the skew toward the elderly with these injuries
  • Spine areas injured were cervical in 20%, thoracic in 19%, lumbar in 29%, sacrococcygeal in 11%, and multiple levels in 21%.
  • During the initial admission, 1.5% developed VTE: 0.9% were DVT and 0.7% were PE
  • Within 1 month of discharge, 0.6% of patients were readmitted for VTE: 0.4% DVT and 0.3% PE
  • In the first 6 months, 1.2% had been readmitted: 0.9% DVT and 0.6% PE
  • Mortality in the first 6 months was 6.7%
  • Factors associated with readmission for VTE included older age, discharge to a skilled nursing facility, rehab center, or care facility

The authors concluded that VTE risk remains high up to 6 months after conservatively managed spinal fractures. They recommend further study to determine the ideal prophylactic agent and duration.

Bottom line: This is a creative way of examining a difficult problem. We know that VTE risk does not stop when our patient is discharged. This is one of the few ways to get a sense of readmissions, even if it is not to the same hospital. And remember, this is an underestimate because it’s possible for a patient living near a state border to be re-hospitalized in a state not in this database.

This study might prompt us to prescribe up to six months of prophylaxis, particularly in seniors who are discharged to other care facilities.

Here are my questions for the author and presenter:

  • Is there any way to extrapolate your data to the entire population of the US, or to compensate for the “readmission over state lines” problem?
  • Is the odds ratio of 1.01 for risk of VTE in the elderly age group significant in any way? It seems like a very low number that would be easily overwhelmed by the “noise” in this data set.
  • Is the mortality number for all causes, or just VTE?

This is an intriguing study, and one that should influence the VTE guidelines in place at many trauma centers!

Reference: THE LONG-TERM RISKS OF VENOUS THROMBOEMBOLISM AFTER NON-OPERATIVELY MANAGED SPINAL FRACTURE. EAST 35th ASA, oral abstract #28.