Tag Archives: Prophylaxis

Best Of EAST #6: How Long Does Risk For VTE Last After Spine Fracture?

Most trauma centers use an existing venous thromboembolism (VTE) guideline or have developed their own injury-specific one. These include risk factors, contraindications, specific agent, and dosing recommendations. But one thing most do not include is duration of prophylaxis!

The length of time a patient is at risk for VTE is not well delineated yet. The group at the University of Arizona decided to tackle this program using the National Readmission Database. This dataset is a comprehensive resource for critically analyzing patients who are discharged and readmitted, even for multiple occurrences. It covers 30 states and almost two thirds of the population.

The authors focused on VTE occurring during the first six months after injury. Patients who died on the initial admission, were taking anticoagulants, had spinal surgery, or sustained a spinal cord injury were excluded. Over 41,000 records from the year 2017 met these criteria.

Here are the factoids:

  • The average age was 61, which shows the skew toward the elderly with these injuries
  • Spine areas injured were cervical in 20%, thoracic in 19%, lumbar in 29%, sacrococcygeal in 11%, and multiple levels in 21%.
  • During the initial admission, 1.5% developed VTE: 0.9% were DVT and 0.7% were PE
  • Within 1 month of discharge, 0.6% of patients were readmitted for VTE: 0.4% DVT and 0.3% PE
  • In the first 6 months, 1.2% had been readmitted: 0.9% DVT and 0.6% PE
  • Mortality in the first 6 months was 6.7%
  • Factors associated with readmission for VTE included older age, discharge to a skilled nursing facility, rehab center, or care facility

The authors concluded that VTE risk remains high up to 6 months after conservatively managed spinal fractures. They recommend further study to determine the ideal prophylactic agent and duration.

Bottom line: This is a creative way of examining a difficult problem. We know that VTE risk does not stop when our patient is discharged. This is one of the few ways to get a sense of readmissions, even if it is not to the same hospital. And remember, this is an underestimate because it’s possible for a patient living near a state border to be re-hospitalized in a state not in this database.

This study might prompt us to prescribe up to six months of prophylaxis, particularly in seniors who are discharged to other care facilities.

Here are my questions for the author and presenter:

  • Is there any way to extrapolate your data to the entire population of the US, or to compensate for the “readmission over state lines” problem?
  • Is the odds ratio of 1.01 for risk of VTE in the elderly age group significant in any way? It seems like a very low number that would be easily overwhelmed by the “noise” in this data set.
  • Is the mortality number for all causes, or just VTE?

This is an intriguing study, and one that should influence the VTE guidelines in place at many trauma centers!

Reference: THE LONG-TERM RISKS OF VENOUS THROMBOEMBOLISM AFTER NON-OPERATIVELY MANAGED SPINAL FRACTURE. EAST 35th ASA, oral abstract #28.

VTE Prophylaxis After Solid Organ Injury

Venous thromboembolism (VTE)  is a common potential complication after traumatic injury. But typically, injury is associated with bleeding, so the trauma professional has to strike a balance between preventing bleeding and preventing clots.

Solid organ injury (liver and spleen, typically) is a common diagnosis after blunt trauma. Most trauma centers have protocols for VTE prophylaxis which apply to patients with those injuries. Older literature that I wrote about eight years divided the time frames for prophylaxis into early (within 3 days), late (greater than 3 days), and none. The authors of that article found that there was no association with untoward bleeding in the early group. And interestingly, there seemed to be less in that group. Unfortunately, the selection of the groups was biased, and the early VTE prophylaxis group had less severe injuries.

The surgery group at the Massachusetts General Hospital tried to clarify current practice by performing a deep dive into the Trauma Quality Improvement Program database. They searched the database to identify patients with “isolated” liver, spleen, kidney, and pancreas injury. They did this by excluding TBI, femur and pelvic fractures, spinal cord injury, and penetrating trauma. They also excluded patients with other other severe injuries with an abbreviated injury scale score of 3 or more.

The authors stratified patients into three groups: early VTE prophylaxis receiving the drug within 48 hours of arrival, intermediate within 48-72 hours, and late after 72 hours.

Here are the factoids:

  • A total of 3,223 patients met inclusion criteria
  • Prophylaxis was classified as early in 57%, intermediate in 22%, and late in 21%
  • About 3/4 received low molecular weight heparin and the remainder received unfractionated heparin
  • Late prophylaxis was associated with a 3x increase in both VTE and pulmonary embolism (PE)
  • Intermediate prophylaxis patient had a 2x increase in VTE but no increase in PE
  • Early prophylaxis showed a 2x increase in bleeding complications, especially in those with diabetes (?), spleen, and high-grade liver injury
  • A total of 60 of the 1,832 patients in the early group had bleeding events: 39 failed nonop mangement and were taken to OR, 8 underwent angioembolization, and 21 received blood transfusions

The authors concluded that early prophylaxis should be considered in patients who do not fall out as higher risk (spleen, high-grade liver, diabetics).

Bottom line: This retrospective study is probably as good as it’s going to get from a data quality standpoint. It’s larger than any single-institution series will ever be, although it suffers from the usual things most large database studies do. 

But it does show us strong associations with DVT and PE as the consequences of waiting to start VTE prophylaxis beyond 48 hours. The caveat is to be careful in certain patients, most notably diabetics and those with liver and spleen injuries, as they are at higher risk to develop complications leading to the OR or interventional radiology suite. 

I urge all of you to re-examine your VTE prophylaxis guideline and modify it to start your drug of choice as early as possible given the cautions for patients with spleen and high-grade liver injuries. The diabetes thing, well, that’s a mystery to me and I will wait for further confirmation to break those patients out separately.

If you are interested, you can see the Regions Hospital trauma program VTE guideline by clicking here.

References:

  • Thromboembolic prophylaxis with low-molecular-weight heparin in patients with blunt solid abdominal organ injuries undergoing nonoperative management: current practice and outcomes. J Trauma 70(1): 141-147, 2011.
  • Timing of thromboprophylaxis in patients with blunt abdominal solid organ injuries undergoing nonoperative management. J Trauma pulish ahead of print, October 12, 2020, doi: 10.1097/TA.0000000000002972

How To Predict Venous Thromboembolism In Pediatric Trauma

As with adults a decade ago, the incidence of venous thromboembolism (VTE) in children is now on the rise. Whereas adult VTE occurs in more than 20% of adult trauma patients without appropriate prophylaxis, it is only about 1% in kids, but increasing. There was a big push in the early 2000′s to develop screening criteria and appropriate methods to prevent VTE. But since the incidence in children was so low, there was no impetus to do the same for children.

The group at OHSU in Portland worked with a number of other US trauma centers, and created some logistic regression equations based on a large dataset from the NTDB. The authors developed and tested 5 different models, each more complex than the last. They ultimately selected a model that provided the best fit with the fewest number of variables.

The tool consists of a list of risk factors, each with an assigned point value. The total point value is then identified on a chart of the regression equation, which shows the risk of VTE in percent.

Here are the factors:

Note that the highest risk factors are age >= 13, ICU admission, and major surgery.

And here is the regression chart:

Bottom line: This is a nice tool, and it’s time for some clinical validation. So now all we have to do is figure out how much risk is too much, and determine which prophylactic tools to use at what level. The key to making this clinically usable is to have a readily available “VTE Risk Calculator” available at your fingertips to do the grunt work. Hmm, maybe I’ll chat with the authors and help develop one!

Reference: A Clinical Tool for the Prediction of Venous Thromboembolism in Pediatric Trauma Patients. JAMA Surg 151(1):50-57, 2016.

DVT Prophylaxis At Home: Do Our Patients Do What They Are Told?

Deep venous thrombosis (DVT) is a big potential problem for many trauma patients, particularly those with orthopedic injuries. Patients at high risk are frequently given a prophylaxis regimen to take home after discharge while they are still at higher risk for clots. The particular choice of medication typically comes down to oral (warfarin or aspirin) vs injectable (low molecular weight heparin (LMWH)).

There is quite a bit of literature on patient compliance with their medication routines, or should I say noncompliance? The group at ShockTrauma in Baltimore evaluated how well orthopedic surgery patients adhered to their prescribed DVT prophylaxis schedule after discharge.

They conducted a randomized, prospective trial on all patients who underwent operative management of extremity or pelvic fractures. These patients were prescribed either oral low dose aspirin (81mg) or subcutaneous injections of LMWH (30mg bid). All completed a standardized 8-question tool to gauge their compliance with the medication regimen. Nicely, a power analysis was performed to identify the minimum number of patients needed to achieve statistical significance ( 126 total patients).

Here are the factoids:

  • Of 1450 potential patients undergoing operative fracture fixation, 329 were eligible for the study. All but 150 were excluded primarily due to no need for prophylaxis or inability to contact.
  • Overall adherence to the prophylaxis plan was fairly high, with 65% of patients having high adherence, 21% medium, and 20% low.
  • A quarter of the LMWH patients felt “hassled” by their regimen, while only 9% of the aspirin group did
  • LMWH prophylaxis was associated with low or medium adherence
  • Having to self-administer the prophylactic agent, being a male, and young was also associated with lower compliance

Bottom line: Interesting study. And unfortunately it suggests that our patients don’t always do what they are told, especially if they have to stick themselves with needles. So they may not be getting the prophylaxis we think they are. Furthermore, we’re not even sure if aspirin (or LMWH for that matter) make a difference in the incidence of death or major pulmonary embolism in these patients.

There are a lot of opportunities for mayhem in this study. A third of the enrolled patients were not even compliant with completing the survey. This is certainly a source of bias, and most likely suggests that the overall compliance rates would have been even lower if they had. 

Keep in mind the risk factors for compliance (age, sex, drug route) when deciding how and what to provide for DVT prophylaxis. Your patient may not be doing what you assume they are!

VTE Prophylaxis Before Spine Surgery?

Many surgeons and surgical subspecialists are nervous about operating on people who are taking anticoagulants. This seems obvious when it involves patients on therapeutic anticoagulation. But it is much less clear when we are talking about lower prophylactic doses.

Spine surgeons are especially reluctant when they are operating around the spinal cord. Yet patients with spine injury are generally at the highest risk for developing venous thromboembolic (VTE) complications like deep venous thrombosis (DVT) or pulmonary embolism (PE). Is this concern warranted?

Surgeons at the Presley Trauma Center in Memphis examined this issue by performing a retrospective review of six years worth of patients who underwent spine stabilization surgery. They specifically looked at administration of any kind of preop prophylactic anticoagulant, and the most feared complications of bleeding complications and postop VTE.

Here are the factoids:

  • A total of 705 patients were reviewed, with roughly half receiving at least one preop prophylactic dose and the other half receiving none
  • There were 447 C-spine, 231 T-spine, and 132 L-spine operations, performed an average of 4 days after admission
  • Overall, bleeding complications occurred in 2.6% and VTE in 2.8%
  • Patients with VTE were more severely injured (ISS 27 vs 18)
  • Those who received at least half of their possible prophylactic doses had a significantly lower PE rate (0.4% vs 2.2%) but no significant difference in DVT or bleeding complications

Bottom line: So what to make of this? It’s a relatively small, retrospective study, and there is no power analysis. Furthermore, this hospital does not perform routine DVT screening, so that component of VTE may be underestimated, rendering the conclusions invalid.

However, the information on bleeding complications is more interesting, since this is much more reliably diagnosed using an eyeball check under the dressing. So maybe we (meaning our neurosurgeons and orthopedic spine surgeons) need to worry less about preop prophylactic VTE drugs. But we still need better research about whether any of this actually makes a dent in VTE and mortality from PE. To be continued.

Reference: Early chemoprophylaxis is associated with decreased venous thromboembolism risk without concomitant increase in intraspinal hematoma expansion after traumatic spinal cord injury. J Trauma 83(6):1108-1113, 2017.