Category Archives: Abdomen

The Handoff In Damage Control Surgery

Damage control surgery is now over 30 years old! We continue to refine the techniques and closure techniques/devices, and have developed novel ways to speed closure of the abdominal wall in order to avoid pesky hernias. But the process itself is time intensive, and typically several days pass with regular returns to OR until closure is achieved.  This is one of the prime areas in which human error can occur, especially with modern service-style coverage of trauma patients.

In the old days, trauma patients were admitted by their surgeon, and that person provided their care nearly continuously until discharge. He or she rounded on them daily, took them back to the OR when needed, and then discharged them.

This is less practical (and desirable) in this day and age. And even if it seems possible, it’s not. No one can be on call 24 hours a day, and provide comprehensive care to every patient, around the clock. Many trauma programs have adopted a “service model”, where patients are admitted to a defined care team and managed by them. The team is led by a surgeon, but that person may change on a weekly (or in some cases nearly daily) basis. I call this the “interchangeable head” model, and to make it work there must be excellent handoffs during any leadership change.

In some cases, a patient may undergo a damage control procedure by one surgeon, but another must do the takeback and possibly the definitive closure. In this case, the handoff is critical! It is paramount that the next surgeon know everything about the first case so that they can perform the correct procedure.

How can this be accomplished? Here are some tips:

  • Do not rely on the medical record and previous operative note. It may not be available, and there is usually some loss of information in recording it anyway. Don’t believe it.
  • Ideally, meet face to face with the previous surgeon(s). Get the blow by blow description of exactly everything that was done and how. Also discuss what still needs to be done, and when. Try to maintain a uniform philosophy of patient care across surgeons.
  • If face to face is not possible, a telephone call is acceptable. The discussion is exactly the same.
  • If the surgery occurred at an outside hospital and was then transferred, you must call the initial surgeon to have this discussion before going to the OR!
  • If something unexpected is encountered during the case, make sure you have contact information so you can call during the case.

Applying these concepts will decrease the possibility of error, as well as the likelihood of any iatrogenic harm to these complex patients.

In my next post, I’ll review a new paper from the Eastern Association for the Surgery of Trauma (EAST) that performs a systematic review and meta-analysis of handoffs in acute care surgery (which includes damage control, of course) and proposes a practice management guideline.

Print Friendly, PDF & Email

Use Of A Solid Organ Injury Protocol For Pediatrics

Kids are frequent flyers when it comes to abdominal injury, with about 15% of their injuries involving this anatomic area. Solid organ injuries, mainly the liver and spleen, are the most prevalent ones. The American Pediatric Surgical Association (APSA) published a practice guideline way back in 2000 that outlined a consistent way to care for children with solid organ injuries.

Unfortunately, they were very conservative, recommending days of bedrest, extended NPO status, very frequent blood draws, and a lengthy hospital stay. Many hospitals, including mine, developed less conservative management routines, noting that children nearly always tolerate liver and spleen injury better than adults.

The trauma group at Vanderbilt modified the APSA guidelines and, more recently, made additional changes based on a new algorithm released by the organization. This new guideline moved away from organ injury grade-based factors and embraced hemodynamic status as the overall guide to care. The Vanderbilt group performed a retrospective study comparing hospital and ICU length of stay, patient costs, readmission, and death rates using the two guidelines.

Under the old protocol, grade I-III injuries were admitted to a floor bed and higher grades to an ICU at the discretion of the surgeon. The minimum hospital stay was, at minimum, the organ injury grade. Children were kept NPO overnight and placed on bed rest for nearly one day per injury grade.

With the new protocol, children were admitted to the floor if their vital signs normalized after volume resuscitation.  Hematocrit was obtained on admission and possibly again after 6 hours, then only repeated if < 21 or a change in vitals was noted. There were no diet or activity restrictions. Children with abnormal vital signs after volume were admitted to the ICU and kept on bed rest until they normalized. Labs were drawn regularly. Length of stay was based on meeting pain control, diet, and activity goals.

Here are the factoids:

  • There were 176 children (age < 18) enrolled in the old protocol during a four-year period and 170 in the new protocol over 3.5 years
  • Both groups were similar demographically and in injury grade and ISS
  • ICU length of stay was “significantly” shorter under the new protocol (.54 vs .78 days)
  • Hospital length of stay was also “significantly” shorter (2.9 vs 3.5 days)
  • Inflation-adjusted costs were slightly higher under the new protocol ($68,042 vs $65,437) even though the authors claim the opposite in the abstract once injury grade and ISS are factored in
  • Survival was the same at 99.4%
  • Readmission rates were significantly higher under the new protocol (7.1% vs 2.3%)

The authors’ conclusions parroted these results and recommended larger studies to detail any cost advantage and identify the cause for the difference in readmission rates.

Bottom line: This study leaves a lot to be desired. The authors’ definition of “pediatric” is age < 18. As we all know, there is a big difference in “kids” who are pre- vs post-puberty. The good news is that the mean and median ages are about 11 in the study, so there should be fewer older “kids” to cause interference.

The authors reported hazard ratios for the lengths of stay, which were statistically significantly different. However, their clinical significance is in doubt. A difference of 6 ICU hours? Or two-thirds of a hospital day? I’m not impressed. 

Cost differences are basically a wash, and a deep read of the paper shows that many kids did not have an isolated solid organ injury. Non-abdominal injuries could have an Abbreviated Injury Scale score of up to 3. It is easy to imagine that these could impact both length of stay and cost.  

Finally, the readmission rates include many problems related to non-abdominal injuries, including the thorax, soft tissues, and even an epidural hematoma. After excluding these non-abdominal complications, the numbers for both protocols are so low it’s hard to believe that a good significance test can be performed.

The authors’ conclusions are correct: more work needs to be done. This paper doesn’t really teach us much since all the conclusions are extremely weak. A much better, prospective, multicenter trial should be performed. Unfortunately, getting buy-in from multiple centers/surgeons to use the same protocol in children is hard.

But with all that being said, there is no reason you can’t adopt something similar to the new protocol at your center. My own experience has shown that a more aggressive guideline gets kids home sooner and healthier and that there is no difference in readmission rates. I just need a bunch of other surgeons to duplicate these results and write them up!

Reference: A Protocol Driven Approach to Reduce Lengths of Stay for Pediatric Blunt Liver and Spleen Injury Patients. Journal of Trauma and Acute Care Surgery ():10.1097/TA.0000000000004259, January 26, 2024. | DOI: 10.1097/TA.0000000000004259 

Print Friendly, PDF & Email

Best Of AAST #4: Starting VTE Prophylaxis After Solid Organ Injury

Venous thromboembolic disease (VTE) continues to be a major issue in trauma patients. Most trauma centers have prophylaxis guidelines to try to reduce this problem. These guidelines typically recognize specific injuries that increase the risk of bleeding if anticoagulants are given. Typical ones include hemorrhagic injuries to the brain, pelvic and spine fractures, and solid organ injuries.

Typically, VTE prophylaxis starts immediately upon admission. But when these high-risk injuries are present, it is usually delayed for a period of time. Unfortunately, that period may be highly variable. Many centers have adopted 2-3 days to delay administration of low molecular weight heparin in patients with solid organ injury.

The AAST initiated a prospective multi-institutional trial comparing early (<48 hours after admission) and late (>48 hours) administration of prophylactic agents. Patients were older than 16 years, had any number of liver, spleen, or kidney injuries, and were initially treated nonoperatively. Patients who were transferred, died in the ED, were pregnant, had a bleeding disorder, or were taking anticoagulants or platelet inhibitors were excluded. A power analysis was performed, and more than the needed number of patients were enrolled.

Here are the factoids:

  • A total of 1173 patients were enrolled, and there were 589 liver injuries, 569 spleen injuries, and 289 kidney injuries
  • About 75% of patients (864) had early prophylaxis
  • Patients were younger (median 34 years), and two-thirds were male, with a median ISS of 22
  • Early VTE prophylaxis patients had significantly lower rates of VTE (3% vs. 7%)
  • There was no significant difference in failure of nonoperative management (5% early vs. 7% late)
  • The early prophylaxis group received fewer units of blood after prophylaxis started (17% vs. 23%)
  • Patients receiving VTE prophylaxis after 48 hours were 2.2x more likely to develop VTE

The authors concluded that early VTE chemoprophylaxis was associated with lower rates of VTE with no increase in complications. They recommended that it should become the standard of care for these patients.

Bottom line: Seeing such a well-designed and nicely executed study is refreshing. If the facts are borne out in the final manuscript review, this should become the standard of care for VTE prophylaxis in patients with solid organ injuries. 

I wish the authors would have stipulated that the chemoprophylaxis was required to be low molecular weight heparin. Unfortunately, there are still more than a few centers using unfractionated heparin. There could be a difference in efficacy and failure rates between the two. This could complicate the statistical analysis. Hopefully, the presenter will address this during the meeting.

I would also like to see a breakdown of when the early VTE prophylaxis actually started. Were they all close to 48 hours? Or were there enough at 24 hours to show this is also safe and effective?

It’s time for everyone to review their VTE prophylaxis guidelines. Get ready to make some major changes in your patients with solid organ injury!

Reference: When is it safe to start VTE prophylaxis after blunt solid organ injury? A prospective AAST multi-institutional trial. AAST 2023, Plenary paper #23.

Print Friendly, PDF & Email

Guidelines For Diagnosis Of Diaphragmatic Injury

In today’s post, I will review the diaphragmatic injury practice guidelines published by the Eastern Association for the Surgery of Trauma (EAST).  I will follow this up on Friday with an interesting delayed diaphragm injury case.

Diaphragm injury is a troublesome one to diagnose. It is essentially an elliptical sheet of muscle that is doubly curved, so it does not lend itself well to diagnosis by axial imaging. The addition of sagittal and coronal reconstructions to a thoracoabdominal CT has been helpful but still has a far from perfect diagnostic record.

From an evaluation standpoint, there are several possibilities:

  • Observation – not generally recommended. It is usually combined with imaging such as a chest x-ray to see if interval changes occur that would indicate the injury.
  • Chest x-ray – this is not often diagnostic, but when herniation of abdominal contents is obvious, the patient most assuredly has an operative problem.
  • Thoracoabdominal CT scan – this technology keeps improving, especially with thinner cuts and different planes of reconstruction. Sometimes even subtle injuries can be detected. But this exam is still imperfect.
  • Laparoscopy or thoracoscopy – this technique yields excellent accuracy when the injury is in an area that can be viewed from the operative entry point chosen.
  • Laparotomy or thoracotomy – this is the ultimate choice and should be nearly 100% accurate. It is almost the most invasive and has more potential associated complications.

EAST reviewed a large body of literature and selected 56 pertinent papers for their quality and design. Then, they critically reviewed them and applied a standard methodology to answer several questions.

Here are the questions with the recommendations from EAST, along with my comments:

  • Should laparoscopy or CT be used to evaluate left-sided thoracoabdominal stab wounds? First, these patients must be hemodynamically stable and not have peritonitis. If either is present, there is no further need for diagnosis; a therapeutic procedure must be performed.
    Left-sided diaphragm injuries from stabs are evil. The hole is small, and since the pressure within the abdomen is greater than the chest, things always try to wiggle their way through this small hole. It can remain asymptomatic if the wiggler is just a piece of fat, but it can be catastrophic if a bit of the stomach or colon pushes through and becomes strangulated. Furthermore, these holes enlarge over time, so more and more stuff can push up into the chest.
    EAST recommends using laparoscopy for evaluation to decrease the incidence of missed injury. However, if the injury is in a less accessible location (posterior), the patient has body habitus issues or adhesions from previous surgery may lead to incomplete evaluation, laparotomy should be strongly considered.
  • Should operative or nonoperative management be used to evaluate right-sided thoracoabdominal penetrating wounds? Note that this is different than the last question. All penetrating injuries (stabs and gunshots) are included, and this one is for management, not evaluation. And the same caveats regarding hemodynamic stability and peritonitis apply. Again, it applies to both stabs and gunshots.
    Unlike left-sided injuries, right-sided ones are much more benign. This is because the liver keeps anything from pushing up through small holes, and they do not tend to enlarge over time due to this protection. For that reason, EAST recommends nonoperative management to reduce operation-related mortality and morbidity.
  • Should stable patients with acute diaphragm injury undergo repair via an abdominal or thoracic approach? This question applies to any diaphragm injury that requires an operation, such as a right-sided penetrating injury or any blunt injury. EAST recommends an approach from the abdomen to reduce morbidity and mortality. However, since abdominal injury frequently occurs in these cases, an approach from the chest limits the ability to identify and repair abdominal injuries. Otherwise, you may find yourself doing a laparotomy in addition to the thoracotomy.
  • Should patients with delayed visceral herniation through a diaphragm injury undergo repair via an abdominal or thoracic approach?  For years, the preferred approach for delayed presentations has been through the chest because the injury is easier to appreciate and repair.  However, if ischemic or gangrenous viscera are present, it will be more challenging to manage and repair from the chest. EAST does not make a specific recommendation for this question and suggests the surgical approach be determined on a case-by-case basis.
  • Should patients with an acute diaphragm injury from penetrating injury without concern for other intra-abdominal injuries undergo open or laparoscopic repair? The quality and quantity of data addressing this question were very low, but EAST recommends laparoscopy to repair these injuries to reduce morbidity and mortality. This includes blunt injuries, which tend to be larger. There were some conversions to an open procedure, especially in the blunt cases. The usual caveats on exposure, injury location, body habitus, and previous surgery apply.

Reference: Evaluation and management of traumatic diaphragmatic injuries: A Practice Management Guideline from the Eastern Association for the Surgery of Trauma. J Trauma 85(1):198-207.

Print Friendly, PDF & Email

Leukocytosis After Splenic Injury

Any trauma professional who has dealt with spleen injuries knows that the white blood cell (WBC) count rises afterwards. And unfortunately, this elevation can be confusing if the patient is at risk for developing inflammatory or infectious processes that might be monitored using the WBC count.

Is there any rhyme or reason to how high WBCs will rise after injury? What about after splenectomy or IR embolization? An abstract is being presented at the Clinical Congress of the American College of Surgeons next month that examines this phenomenon.

This retrospective study looked at a convenience sample of 75 patients, distributed between patients who had splenic injury that was either not treated, removed (splenectomy), or embolized. Data points were accumulated over 45 days.

Here are the factoids:

  • 20 patients underwent splenectomy, 22 were embolized, and 33 were observed and not otherwise treated
  • Injury severity score was essentially identical in all groups (19)
  • Splenectomy caused the highest WBC counts at the 30 day mark (17.4K)
  • Embolized patients had mildly elevated WBC levels (13.1K) that were just above the normal range at 30 days
  • Observed patients had high normal WBC values (11.0K) after 30 days
  • Values in observed and embolized patients normalized to about 7K after 30 days; splenectomy patient WBC count remained mildly elevated at 14.1K.
  • The authors concluded that embolization does not result in permanent loss of splenic function (bad conclusion, rookie mistake!)

Bottom line: This study is interesting because it gives us a glimpse of the time course of leukocytosis in patients with injured spleens. If you need to follow the WBC for other reasons, if gives a little insight into what might be attributable to the spleen. Splenectomy generally results in a chronically elevated WBC count, which tends to vary in the mid-teens range. Embolization (in this study) transiently elevates the WBC count, but it then drops back to normal.

The big problem with this study (besides it being small) is that it fails to recognize that there are many different shades of embolization. Splenic artery? Superselective? Selective? I suspect that the WBC count in main splenic artery embolization may behave much like splenectomy in terms of leukocytosis. And the conclusion about splenic function being related to WBC count was pulled out of a hat. Don’t believe it.

Reference: Leukocytosis after Splenic Injury: A Comparison of Splenectomy, Embolization, and Observation. American College of Surgeons Scientific Forum Abstracts pg S164, 2015.

Print Friendly, PDF & Email