Tag Archives: Prophylaxis

Does Aspirin Add Anything To DVT Prophylaxis?

Venous thromboembolism (VTE) is an ongoing problem for trauma professionals. Most trauma programs have settled on their own flavor of screening, prophylaxis, and treatment once the problem actually surfaces in a patient. Most prophylaxis centers around a combination of mechanical (leg squeezers) and chemical (some type of heparin) management.

Aspirin has been used for prophylaxis for elective orthopedic surgery, and occasionally in trauma patients managed by orthopedic surgeons for years. Existing literature supporting this has been sparse and unconvincing. But since VTE involves platelets as part of the process, why not have another look?

A recently published paper from Scripps in San Diego looked tried to gauge the effect of aspirin on trauma patients where taking it before they were injured. Novel idea. Can the findings be useful? The authors performed a retrospective, case-controlled study of patients who developed post-traumatic deep venous thrombosis (DVT). The patients were matched for 7 covariates, and the authors looked at an additional 26 risk factors. Those taking aspirin pre-injury were compared with those who were not.

Here are the factoids:

  • 172 cases were identified over the 5 ½ year study, and 62 (36%) were excluded because a matched control could not be found
  • 7% of the remaining110

    patients were taking aspirin (why?)

  • 13% of controls were taking aspirin
  • 7% were taking warfarin, and 4% were taking clopidogrel
  • The mean age was 52, ISS was 13-14, and hospital stay was 7-10 days (!)
  • Multivariate analysis showed a significant protective effect from DVT with a risk ratio of 0.17 (!!)
  • But this effect was found only when used in conjunction with heparin prophylaxis after admission

Bottom line: Interesting findings. What does it mean? First, this is a very small retrospective study. It was conducted over 5+ years, so changes in VTE screening and prophylaxis may have occurred at this hospital. But even so, the finding were compelling. The biggest problem is that we can’t expect people to predict that they will need to start taking aspirin. But the study does raise the interesting question of whether it might be helpful to start taking it as soon as the patient arrives at the hospital. This is one of those thought provoking studies that should prompt someone (hint hint) to design a nice prospective study to see if this ultra-cheap drug might help us bring down our VTE rates even more.

Reference: Aspirin as added prophylaxis for deep vein thrombosis in trauma: A retrospective case-control study. J Trauma 80(4):625-630, 2016.

How To Predict Venous Thromboembolism In Pediatric Trauma

As with adults a decade ago, the incidence of venous thromboembolism (VTE) in children is now on the rise. Whereas adult VTE occurs in more than 20% of adult trauma patients without appropriate prophylaxis, it is only about 1% in kids, but increasing. There was a big push in the early 2000′s to develop screening criteria and appropriate methods to prevent VTE. But since the incidence in children was so low, there was no impetus to do the same for children.

The group at OHSU in Portland worked with a number of other US trauma centers, and created some logistic regression equations based on a large dataset from the NTDB. The authors developed and tested 5 different models, each more complex than the last. They ultimately selected a model that provided the best fit with the fewest number of variables.

The tool consists of a list of risk factors, each with an assigned point value. The total point value is then identified on a chart of the regression equation, which shows the risk of VTE in percent.

Here are the factors:

Note that the highest risk factors are age >= 13, ICU admission, and major surgery.

And here is the regression chart:

Bottom line: This is a nice tool, and it’s time for some clinical validation. So now all we have to do is figure out how much risk is too much, and determine which prophylactic tools to use at what level. The key to making this clinically usable is to have a readily available “VTE Risk Calculator” available at your fingertips to do the grunt work. Hmm, maybe I’ll chat with the authors and help develop one!

Reference: A Clinical Tool for the Prediction of Venous Thromboembolism in Pediatric Trauma Patients. JAMA Surg 151(1):50-57, 2016.

SCIP: Importance Of Prophylactic Antibiotics In Trauma Laparotomy

Quite a lot of research has been done on the efficacy of prophylactic antibiotics in the prevention of infectious complications after surgical procedures. Antibiotics are now routinely given prior to most elective surgical procedures. In the US, the Centers for Medicare and Medicaid Services has formalized this into part of the Surgical Care Improvement Project (SCIP), which mandates the use of an appropriate antibiotic within 1 hour preop and stopping it within 24 hours postop.

But what about emergent cases, like trauma laparotomy? Ensuring timely antibiotic administration is difficult due to the rapid events leading up to the operation. And sometimes it is not clear whether a hollow viscus injury has occurred until after start of operation, so the antibiotic choice may change in the middle of the case.

Two busy urban trauma centers with high penetrating injury rates looked at one year of experience in patients undergoing trauma laparotomy. They compared surgical site infections (SSI) in patients who received SCIP-compliant antibiotic administration vs those who did not. 

Key findings:

  • Patient mix was 30% blunt, 44% gunshot, 27% stab wounds
  • There were 151 SCIP-compliant patients and 155 noncompliant ones
  • Half of the noncompliant group did not receive the appropriate antibiotic (usually Cefazolin in hollow viscus injury), and half had antibiotics given for more than 24 hours
  • SCIP-compliant patients had significantly fewer wound infections and shorter length of stay. Mortality was the same.

Bottom line: I recommend adhering to SCIP prophylactic antibiotic guidelines for trauma laparotomy. There is no reason why this subset of patients should be treated any differently, and this study presents evidence that it is beneficial. Using the SCIP guidelines in emergent surgery reinforces the usual preop routine in hospitals that have already embraced them. In general, blunt trauma patients undergoing laparotomy should receive prophylaxis that covers skin organisms. Since penetrating trauma has a much higher chance of involving the intestinal tract, broader spectrum antibiotics should be selected. In either case, use the antibiotic that has been selected for this purpose by your hospital. And be sure they are stopped during the first 24 hours.

Reference: “SCIP"ping antibiotic prophylaxis guidelines in trauma: the consequences of noncompliance. J Trauma 73(2):452-456, 2012.

DVT Prophylaxis After Solid Organ Injury

Nonoperative management of solid organ injury is the norm, and has reduced the operative rate significantly. At the same time, the recognition that development of deep venous thrombosis (DVT) in trauma patients is commonplace creates uncertainty? Is it safe to give chemical prophylaxis with low molecular weight heparin (LMWH)? How soon after injury?

The trauma group at USC+LAC published the findings of a retrospective review of 312 patients undergoing nonoperative management for their liver, spleen or kidney injuries. They looked at chemical prophylaxis administration and its relationship to failure of nonop management of solid organ injury.

As expected, as the grade of the solid organ injury increased, so did the failure rate of nonoperative management. Administration of low molecular weight heparin, such as enoxaparin, did not increase failure rate in this study. All but one failure occurred in patients who had not yet received the injections. Likewise, two DVT and two pulmonary embolisms occurred, but only in patients who had not yet received prophylaxis. 

Bottom line: This small study offers some assurance that early prophylaxis is okay, and a few prospective studies do exist. UCSF / San Francisco General is comfortable beginning chemical prophylaxis 36 hours postop, regardless of solid organ injury. Look for more guidance on this issue in the near future. Until then, consider starting LMWH prophylaxis early to avoid complications from DVT or PE.

Reference: Thromboembolic prophylaxis with low-molecular-weight heparin in patients with blunt solid abdominal organ injuries undergoing nonoperative management: current practice and outcomes. J Trauma 70(1): 141-147, 2011.

Brain Injury and DVT Prophylaxis Part II

I previously wrote about a new review that looked at using chemical prophylaxis for deep venous thrombosis (DVT) in patients with traumatic brain injury (TBI). The authors showed that it was safe to give subcutaneous heparin products within 24 to 48 hours after a stable 24 hour followup CT.

A just-published article now helps to refine the selection of the heparin product. A retrospective review looked at 386 ICU patients with a head Abbreviated Injury Score (AIS) > 2. A total of 57 received mechanical prophylaxis, the remainder received heparin products. Chemical prophylaxis consisted of subcutaneous enoxaparin 30mg bid or unfractionated heparin 5000u tid, at the whim of the attending neurosurgeon.

The heparin group had a slightly but significantly higher Head AIS (4.1 vs 3.8). The drugs were started at the same time post-injury, about 48 hours from admission. Unfractionated heparin was found to be inferior to enoxaparin. The unfractionated heparin patients had both a higher rate of pulmonary embolism, and were more likely to have progression of any intracranial hemorrhage (12% vs 5%). The authors claim a significantly lower DVT rate, but information in their data tables do not support this. Additionally, their overall DVT rate is very low, most likely because they did not routinely screen for it.

Bottom line: The head injury / DVT prophylaxis literature is expanding rapidly. It’s time to start working with your neurosurgeons to initiate chemoprophylaxis early (within 48 to 72 hours from injury once any intracranial bleeding is stable). And it looks like the drug of choice is enoxaparin, not unfractionated heparin.

Reference: Safety and efficacy of heparin or enoxaparin prophylaxis in blunt trauma patients with a head abbriviated injury severity score >2. J Trauma 71(2):396-400, 2011.

Related post: Brain injury and chemical prophylaxis for DVT