All posts by TheTraumaPro

Hard Time Discharging Your Trauma Patient?

Trauma services tend to have fairly rapid patient turnover. Many of the patients that are seen have injuries that are easily managed, leading to discharge within one to two days. On the flip side, some have such severe injuries that they may be in the hospital for weeks or even months. But regardless of injury, there are always a few who we just can’t seem to discharge at all. Why does this happen?

The trauma program at the Massachusetts General Hospital looked at 5 years worth of admission data on adult patients. They looked at the usual hospital demographics, billing information, hospital financial information, and discharge disposition. The ultimate goal was to identify patients who had an excessively prolonged hospitalization (defined as 2 standard deviations above the average length of stay for the associated Diagnosis Related Group) and why.

Here are the factoids:

  • 155 of 3237 admitted patients (5%) had an extended stay. The total number of admits seems weird, since this would average out to only 650 admissions per year to this busy hospital.
  • The usual injury severity demographics were similar.
  • Extended stay patients tended to be older, sustained blunt trauma, were Medicare or no-pay patients, and were discharged to facilities other than home.
  • Length of stay was 3 times longer than the usual patients
  • Hospital cost was 3 times higher, and the hospital lost a lot of money on them.
  • In-hospital mortality was lower for these patients (?!).
  • The biggest factors delaying discharge were transfer to a rehab or other post-acute care facility, and self-pay or Medicare pay status.

Bottom line: Extended stay in the hospital when not medically indicated is a bad thing, and it’s a system problem. The chance of complications is always present, including deep venous thrombosis, exposure to resistant organisms, UTI, pneumonia, and medication error, just to name a few. And it’s generally bad for the hospital’s financial health, as well. If you are experiencing this at your center, carefully analyze the reasons why it typically occurs. Then work proactively to address them.

  • Identify potential problem discharge patients on their first day in the hospital
  • Develop special arrangements with post-discharge facilities.
  • Hire skilled (and aggressive) social workers
  • Don’t give up!

Reference: Excessively long hospital stays after trauma are not related to the severity of illness. JAMA Surg 148(10):956-961, 2013.

Yet Another One: The Eleventh Law Of Trauma

If you have followed this blog for any period of time, you are aware of the skepticism I bring to bear when I am reading new material or learning of new ideas. Why is this? Because it is very difficult in this day and age to ascertain the veracity of anything we see, hear, or read.

This is not new compared to, say, a hundred years ago. The media were a bit different, but the underlying issues were the same. There have always been two major factors at play: information overload and the biases built into our human brain operating system.

There is a huge body of new information in every field that is being produced every year. Given the pressures that most researchers are under to publish or perish, a huge number of papers are sent to journals for review. Unfortunately, this leads to a huge number of publications that are of lower quality.

This also contributes to another recognized phenomenon, the half-life of facts. Think about all the things you learned during your training that are no longer believed to be true. Stress causes ulcers. Steroids are good in head injury. There is a definite decay curve for the old facts that occurs as new knowledge is acquired.

So we have a huge amount of potential junk to sort through to figure out what cellular mechanisms are correct or which medications work for a disease. And then we run into our own operating system problems.

All humans have our own innate beliefs that are shaped by experience and all the information we’ve consumed over the years. And we are genetically programmed to do this:
Learn something new  —>  believe it  —>  verify it

And many of us never get to the verify stage because another operating system issue, confirmation bias, takes over. If we learn something that confirms an existing belief, we are much more likely to believe and much less likely to verify. If we learn something that opposes our belief, we still want to believe what we already do and find every flaw in the new data that might refute it.

So here is my eleventh law of trauma:

“Don’t believe anything you learn, especially if it supports what you already believe”

And here is it’s corollary:

“Don’t believe everything you think!”

Bottom line: If you read or hear something new, first examine the source. Is it legitimate and reliable? Where did it get the info? Then check out that source. Critically evaluate it, even if it already supports what you believe. Always treat new information, especially if you think it’s right, as an opportunity to learn something new. Sometimes you will find real gems in the things you thought were wrong, and real crap in the things you believed to be right!

It’s time to flip the algorithm to:
Learn something new  —>  verify it  —>  believe it

Can Chest Tube Insertion Result In Exposure To Coronavirus?

Endotracheal intubation is considered an aerosol-producing procedure. In this new age of SARS-CoV-2 and COVID-19, most hospitals are stepping up the level of personal protective equipment (PPE) used when performing this procedure. This has also resulted in modifications in the location where intubation is performed and the choice of drugs used.

But what about needle and chest thoracostomy? These are different than intubation in that the respiratory tract is usually not directly accessed. However, there is the opportunity for exposure to pleural fluid. In the case of needle thoracostomy, it is possible that air under pressure in the chest can force tiny droplets or even an aerosol out and into the air. There is less likelihood of aerosolization during tube thoracostomy, where liquid and droplet exposure can be anticipated.

What do we know about pleural fluid and the novel coronavirus? Basically nothing. And there is very little literature out there regarding other respiratory viruses in pleural fluid either. The only paper I could find (reference below) was published five years ago by a Spanish group. They compared the presence of bacteria and viruses in the pleural fluid of patients with community acquired pneumonia against an uninfected control group. They found only one incidence of virus in the pleural fluid in one patient, a human metapneumovirus. Is this comforting? Probably not.

Trauma patients with chest trauma are likely very different. Those with a hemo- or pneumo-thorax, by definition, had some violation of the surface of the lung. to cause the leak This injury is very likely to breach alveoli which are laden with coronavirus, thus contaminating the pleural fluid. Once that occurs, it is possible that the entire thorax surrounding the lung is contaminated. Note: this is one of those “common sense” assumptions with absolutely no data currently to back it up.

Bottom Line: This is yet another of the many questions about SARS-CoV-2 that we just don’t have an objective answer to. However, since we are already limiting exposure during or forgoing laparoscopic procedures altogether to avoid vaporizing viral particles in smoke, it makes sense to protect ourselves during procedures that involve pleural fluid in trauma patients.

Until we have more data, needle and tube thoracostomy procedures should be considered at least a droplet-prone procedure, if not an aerosol-producing one. This means that trauma professionals should don appropriate personal protective equipment as dictated by their local policies and procedures before performing these procedures.

Reference: Detection of bacteria and viruses in the pleural effusion of children and adults with community-acquired pneumonia. Future Microbiology 10(6):909-916, 2015.

Activity Guidelines After Solid Organ Injury: How Important Are They?

Just about every practice guideline out there regarding liver and spleen injury has some type of physical activity guidelines associated with it. The accepted dogma is that moving around too much, or climbing stairs, or lifting objects, or getting tackled while playing rugby could exacerbate the injury and lead to complications or surgery.

But is it true? Activity restrictions after solid organ injury have been around longer than I have been a trauma surgeon. And the more people I poll on what they do, the more and very different answers I get. And there are no decent papers published that look critically at this question. Until now. 

A pediatric multi-center study of study on adherence to activity restrictions was published last year. Ten Level I pediatric trauma centers in the US tabulated their experience with solid organ injuries over a 3.75 year period fro 2013 to 2016. Only patients with successful nonoperative management of their injury were included, and those with high grade renal or pancreatic injuries were excluded.

Since this was a pediatric study, the American Pediatric Surgical Association (APSA) practice guideline was followed (activity restriction = organ injury grade + 2 weeks). Activity restrictions included all sports, any recreational activity with wheels, or any activity that involved having both feet off the ground. Patients with Grade III-V injuries were seen at an office visit after 2 weeks, and lower grade injuries had a phone followup.

Adherence to guidelines was assessed by a followup phone call two months after injury. Clinical outcomes assessed at 60 days included unplanned return to the emergency department (ED), re-admission, complications, and development of new bleeding confirmed by surgery, ultrasound, or computed tomography (CT) at 60 days post injury.

Here are the factoids:

  • Of the 1007 patients in the study, some 56% were either excluded (178) or lost to followup (463)
  • Of the remaining 366, roughly 46% had a liver injury, 44% spleen, and the remaining 10% had both
  • Median age was 10, so this was actually a younger population
  • 76% of patients claimed they abided by the guidelines, 14% said they did not, and 10% “didn’t know.” This means they probably did not.
  • For the 279 patients who said they adhered to activity restrictions 13% returned to the ED and half were admitted to the hospital
  • Of the 49 patients who admitted they did not follow the guidelines, 8% returned to the ED at some point and none were readmitted
  • The most common reasons for return to ED were abdominal pain, anorexia, fatigue, dizziness, and shoulder pain
  • There were no delayed operations in either of the groups

Bottom line: There were no significant differences between the compliant and noncompliant groups. Unfortunately, the authors did not include an analysis of the “I don’t know if I complied” group, which would have been interesting. But there is one issue I always worry about in these low-number-of-subjects studies that don’t show a significant difference between groups. Did they have the statistical power to show such a difference? If not, then we still don’t know the answer. And unfortunately, I’m not able to guess the numbers well enough to do the power calculation for this study.

I am still intrigued by this study! Our group originally had a fixed time period (6 weeks) of limited activity in our practice guideline for pediatric solid organ injury patients. This was rescinded last year based on our experience of no delayed complications and guidance from our sister pediatric trauma center at Children’s Hospital in Minneapolis. We are also moving toward making a similar change on our adult practice guideline.

Too many centers wait too long to make changes in their practice guidelines. They bide their time waiting for new, published research that they can lean on for their changes. Unfortunately, I think they will be waiting for a long time because many of our questions are not interesting enough for acceptance by the usual journals. Rely on the expertise and experience of your colleagues and then make those changes. Be sure to follow with your performance improvement program to make sure that they actually do work as well as you think!

Reference: Adherence to APSA activity restriction guidelines and 60-day clinical outcomes for pediatric blunt liver and splenic injuries (BLSI). J Ped Surg 54:335-339, 2019.

COVID-19 Thinking Cap: How To Protect Personnel During Intubation (Video)

There is a fascinating letter in the New England Journal of Medicine submitted by authors from the Boston Medical Center and Brigham and Women’s Hospital. Like all trauma professionals, they were concerned with droplet contamination produced during the intubation process. Most hospitals have modified their intubation procedures to try to protect personnel as much as possible.

The authors designed a Plexiglas box with two holes for the arms of the intubator that is placed over the patient’s head. This should serve to shield them, and other personnel in the room if the patient unexpectedly coughs during the process. They tested this concept using an intubation mannequin. First, they placed a balloon filled with fluorescent dye in its mouth and slowly inflated until it burst. Here was the result when viewed under ultraviolet light. Sputum everywhere!

Next, they placed the intubation shield over the patient. Here is a drawing of its dimensions.

The device is open on the bottom and on the side away from the intubator. The arm holes are 10cm in diameter.

The authors then repeated the balloon experiment with the shield in place and the intubator’s arms inserted through the holes. The resulting contamination was limited to their hands and forearms, and the inside of the shield.

Bottom line: This is a very interesting yet simple and cheap device that can be built by just about anyone and should protect personnel from droplet contamination. It will not have much effect on aerosols escaping into the room, but that’s what our other PPE are for! It’s a great example of how creativity is key in keeping us all safer during this pandemic.

You can view the video on the NEJM website at:
https://www.nejm.org/doi/full/10.1056/NEJMc2007589

Reference: Barrier Enclosure during Endotracheal Intubation. NEJM DOI: 10.1056/NEJMc2007589, April 4 2020.