All posts by TheTraumaPro

Cricothyrotomy In The COVID Age

COVID-19 has changed everything. Our patients and even our co-workers could be harboring the virus. Workplace precautions have changed. Many of the minutiae of living have changed. All trauma professionals are concerned with protecting themselves from contagion in order to continue providing vital care to more patients.

We have a fairly good understanding of how the virus spreads. Aerosols and aerosolizing procedures are a major risk factor for involved personnel. In general, hospitals already have processes and policies in place for the most common aerosolizing procedure, endotracheal intubation. Even in emergency circumstances, this is a relatively controlled procedure.

But what about cricothyrotomy? This is far less commonly performed, and as such is prone to more variability. Surgeons at Northwestern University in Chicago tested several techniques for more safely performing this procedure. They placed three different types of draping materials commonly found in or around a trauma bay over their hands in an attempt to decrease aerosolization produced during the procedure.

They tested these drapes using a cricothyrotomy simulator based on a porcine trachea. To identify aerosolization, they atomized fluoroscein into the trachea and monitored the procedure with an ultraviolet light.

The first drape tested was a clear plastic x-ray cassette holder. The advantage of using this as a drape is its transparency. The surgeon does not need to peek under the plastic while performing the crich. Unfortunately, the stiffness and slipperiness of the plastic makes it prone to sliding off the procedure site.

A dry blue surgical towel was used next. This performed a bit better, but still slipped off the operative field. Black light inspection showed a significant amount of aerosol contamination of the edge of the towel and the surgeon’s gown.

Finally, a wet blue surgical towel was tested. The towel easily stayed in place and retained nearly all of the aerosolized fluoroscein. There was a negligible amount on the surgeon’s gown.

Bottom line: The authors recommended that wet surgical towels be placed over their hands and used as a barrier when performing a cricothyrotomy in a COVID positive or unknown patient. The reality is that this will apply to this procedure in just about any acute trauma patient you see. Obviously, this trick does not eliminate aerosolization. Rather, it dramatically reduces the amount and hence, the risk to the surgeon and other personnel in the room. It’s not perfect, but definitely worth it!

To view a video demonstrating the technique and results for each of the drapes, click here.

Reference: Emergency cricothyrotomy during the COVID-19 pandemic: how to suppress aerosolization. Trauma Surgery Acute Care Open 5(1):e000482, 2020.

In The Next Trauma MedEd Newsletter: Blunt Carotid And Vertebral Injury

The next issue of Trauma MedEd will be sent out to subscribers this week, and will provide some interesting information on fblunt carotid and vertebral artery injury (BCVI).

This issue is being released to subscribers at 9am Central time on Tuesday. If you sign up any time before then, you will receive it, too. Otherwise, you’ll have to wait until it goes out to the general public next week. Click this link right away to sign up now and/or download back issues.

BCVI is not something trauma professionals see often. Or is it?

In this issue, learn about:

  • What BCVI is
  • How common it is
  • The various screening systems and how good they are
  • How to grade it
  • And most importantly, how to treat it

As always, this month’s issue will go to all of my subscribers first. If you are not yet one of them, click this link right away to sign up now and/or download back issues.

Everything You Wanted To Know About: Cranial Bone Flaps

Patients with severe TBI frequently undergo surgical procedures to remove clot or decompress the brain. Most of the time, they undergo a craniotomy, in which a bone flap is raised temporarily and then replaced at the end of the procedure.

But in decompressive surgery, the bone flap cannot be replaced because doing so may increase intracranial pressure. What to do with it?

There are four options:

  1. The piece of bone can buried in the subcutaneous tissue of the abdominal wall. The advantage is that it can’t get lost. Cosmetically, it looks odd, but so does having a bone flap missing from the side of your head. And this technique can’t be used as easily if the patient has had prior abdominal surgery.

2. Some centers have buried the flap in the subgaleal tissues of the scalp on the opposite side of the skull. The few papers on this technique demonstrated a low infection rate. The advantage is that only one surgical field is necessary at the time the flap is replaced. However, the cosmetic disadvantage before the flap is replaced is much more pronounced.

3. Most commonly, the flap is frozen and “banked” for later replacement. There are reports of some mineral loss from the flap after replacement, and occasional infection. And occasionally the entire piece is misplaced. Another disadvantage is that if the patient moves away or presents to another hospital for flap replacement, the logistics of transferring a frozen piece of bone are very challenging.

4. Some centers just throw the bone flap away. This necessitates replacing it with some other material like metal or plastic. This tends to be more complicated and expensive, since the replacement needs to be sculpted to fit the existing gap.

So which flap management technique is best? Unfortunately, we don’t know yet, and probably never will. Your neurosurgeons will have their favorite technique, and that will ultimately be the option of choice.

Reference: Bone flap management in neurosurgery. Rev Neuroscience 17(2):133-137, 2009.

How To: Treat A Penetrating Lung Injury

Penetrating injuries of the lung come in two flavors: gunshot and stab. However, the end result for both is the same. They leak. And the leak is either air or blood. Having lower kinetic injury, stab wounds tend not to leak as much. Gunshots, on the other hand, can travel further through lung tissue and the higher energy causes more damage.

For the most part, managing these injuries is straightforward. The lung is essentially a sponge. Since most of it is air, the amount of damage done is much less than, say, to a solid organ. But bleeding and air leaks can be annoying in some cases, and even life-threatening in others.

Today, I’ll focus on injuries to the lung parenchyma. Here’s a basic primer on how to manage them.

  1. As always, the first decision to make is to answer the question, “do we need to go to the operating room right now?” This is always determined by unstable vital signs or symptoms that cannot be controlled with simple maneuvers like a chest tube.
  2. Next, determine if any treatment is needed at all. The initial chest x-ray will tell you a lot.
    1. Is there any air or blood at all? If so, a followup chest x-ray after a set amount of hours (I use 6) will detect any progression that needs future treatment.
    2. Is there too much blood or air? If so, insert a chest tube.
  3. Is there too much ongoing air leak or bleeding? This indicates a problem (bronchial or chest wall / pulmonary vascular injury) that needs operative treatment.

What are your options if you go to the operating room? Generally, an open thoracotomy is the most desirable, especially in the face of gunshots and major bleeding. It is fast and allows for rapid and complete exploration. VATS might be okay in a few stab wounds where the injury is thought to be limited but is still problematic.

Find the hole(s). With a single penetration, there are usually one or two holes. But there can be up to four if the wound traverses two lobes. And if is are more than one penetration, all bets are off.

Don’t poke a skunk. If a particular wound has no obvious bleeding or air bubbles, leave it alone. Save your efforts for the ones that are really a problem.

Use stapled tractotomy. Direct repair of lung wounds may lead to intra-parenchymal hematomas or air embolism. Wedge resection reduces lung volume, particular in patients with multiple injuries.

Here’s how to do it. Insert a GIA stapler through the bullet tract and fire. This will lay open the entire tract so that individual air leaks and bleeders can be individually suture ligated.

Then fully evacuate all blood from the chest and make sure there is no more bleeding. Failure to do so can result in retained hemothorax and the need for yet another operation. Insert a well-positioned chest tube to finish off the procedure.

Reference: Stapled pulmonary tractotomy: a rapid way to control hemorrhage in penetrating pulmonary injuries. JACS 185(5):467-487, 1997.

NSAIDs And Fracture Healing Revisited

Over the years, I’ve commented several times on the “myth” of NSAIDs causing problems with fracture healing. I still hear occasional comments from my orthopedic colleagues cautioning against the use of these drugs in patients who have had fracture repairs.

But is it true?  In 2003, several papers brought to light possible interactions between these drugs and fracture healing. Specifically, there were questions about these drugs interfering with the healing process and of increasing the number of delayed unions or nonunions. But once again, how convincing were these papers, really?

It would seem to make sense that NSAIDs could interfere with bone healing. The healing process relies heavily on the regulation of osteoblast and osteoclast function, which itself is regulated by prostaglandins. Since prostaglandins are synthesized by the COX enzymes, COX inhibitors like the NSAIDs should have the potential to impair this process. Indeed, animal studies in rats and rabbits seem to bear this out.

But as we have seen before, good animal studies don’t always translate well into human experience. Although a study from 2005 suggested that NSAID administration in older patients within 90 days of injury had a higher incidence of fracture nonunion, the study design was not a very good one. It was equally likely that patients who required these drugs in this age group may have been at higher risk for nonunion in the first place.

A meta-analysis of human studies was performed in 2011. Out of 558 potential studies, only 5 met criteria review. (This is yet another reminder of the sheer amount of sub-par research out there.) The authors found that short-term use (< 14 days) of normal dose NSAIDS was not associated with non-union. High doses of ketorolac (> 120mg/day) and diclofenac sodium (> 300mg total) did have an association. But remember, this does not show causation. There are many other factors that can impede healing (smoking, diabetes, etc).

A study from 2016 examined the effect of ketorolac administration on fracture healing in patients undergoing repairs of femoral and tibial fractures. It did not find an association between non-union and ketorolac, but did find one with smoking. Unfortunately, the study was small (85 patients given ketorolac, 243 controls without it). It probably does not have the statistical power to detect any difference with the NSAID. A power analysis was not provided in the methods section.

Bottom line: Once again, the animal data is clear and the human data less so. Although there are theoretical concerns about NSAID use and fracture healing, there is still not enough solid risk:benefit information to abandon short-term NSAID use in patients who really need them. NSAIDs can and should be prescribed in patients with short-term needs and simple fractures. But we now have evidence that high-dose NSAIDs may have some impact, so stick to the usual doses for just as long as they are needed for pain management.

References:

  1. Effects of nonsteroidal anti-inflammatory drugs on bone formation and soft-tissue healing. J AM Acad Orthop Surg 12:139-43, 2004.
  2. Effect of COX-2 on fracture-healing in the rat femur. J Bone Joint Surg Am 86:116-123, 2004.
  3. Effects of perioperative anti-inflammatory and immunomodulating therapy on surgical wound healing. Pharmacotherapy 25:1566-1591, 2005.
  4. Pharmacological agents and impairment of fracture healing: what is the evidence? Injury 39:384-394, 2008.
  5. High dose nonsteroidal anti-inflammatory drugs compromise spinal fusion. Can J Anaesth 52:506-512, 2005.
  6. Nonsteroidal Anti-Inflammatory Drugs and Bone-Healing: A Systematic Review of Research Quality. JBJS Rev 4(3), 2016.
  7. High-dose ketorolac affects adult spinal fusion. Spine 36(7):E461-E468, 2011.
  8. Ketorolac administered in the recovery room for acute pain management does not affect healing rates of femoral and tibial fractures. J Orthop Trauma 30(9):479-482, 2016.