Category Archives: CNS

Glasgow Coma Scale For Trauma Activation: What’s The Optimal Score?

Last month, I posted a survey to  find out the Glasgow Coma Scale (GCS) values trauma centers were using to trigger their highest level trauma activation. Nearly 150 people responded, providing a nice snapshot of practices worldwide. Today, I’ll summarize the responses and provide a bit of commentary about them.

There were a total of 147 respondents from around the world. I tried to eliminate duplicates from the same center using a self-reported postal code. However, this was an optional field, so there is the possibility that a few crept in. Readers from at least six countries outside the US also responded.

The question  was: “What is the highest GCS score that triggers a top-level trauma activation at your trauma center?”

Here is a chart that shows the results. The proper way to read it is “a trauma activation is called if GCS < xx” where xx is the score under the bar in the chart.

The whole point to calling a trauma activation is to have the full trauma team and infrastructure (labs, imaging, blood, etc.) in place to rapidly assess a patient with life-threatening injuries. In theory this should afford them the best probability of survival.

So what is the optimal GCS score to activate your trauma team? Unfortunately, this remains difficult to answer exactly. From the chart, you can see that the most common scores were 8, 9, and 13. Why such a spread?

The GCS 8 and 9 levels are a no-brainer (ha!). These patients are comatose or nearly so, and obviously need prompt attention such as airway control, head CT, and neurosurgical consultation. But what about the patients with GCS 13? They have lost two points, typically for eye-opening and verbal response. This may indeed indicate  a significant head injury. But all too often we see this same score in patients who are intoxicated. Do we really need (or want) to activate the full team for each and every intoxicated patient? Can we screen them out in some way?

The answer to both questions is yes. The most important tip is to know your patient population. There is an association between GCS and need for operative intervention that was oft-quoted in the ATLS course. However, I have not been able to find a definitive paper on this topic.

I recommend that you tap into your trauma registry and create a chart that shows presenting GCS vs early neuro-intervention (ICP monitor or craniectomy within 24 hours). Find the GCS score where you see a “significant” bump in the number needing a procedure, and use this as your trauma activation threshold. This report will automatically take into account the number of intoxicated patients you treat.

I would also recommend you do a separate report on age vs need for neuro-intervention with GCS<15. The older population tends to require craniectomy for TBI more often and at higher GCS levels than younger people. You may factor this into your single GCS criterion, or add a separate one at a different level for patients over 55, or 60, or whatever reflects your patient age mix.

Bottom line: Make sure your GCS trauma activation criteria adequately identify your patients who truly have a need for speed in their trauma evaluation. A GCS of 8 or 9 may be too low, and a score in the teens is probably more appropriate for most centers. Use your trauma registry to determine the best score for you so you can capture the patients who have critical needs while trying to keep overtriage under control.

 

Print Friendly, PDF & Email

GCS At 40: The New GCS-40

As discussed in my first post in this series, the original Glasgow Coma Scale (GCS) was described in 1974. It was originally intended to be a chart of all three components, trended over time. Ultimately, the three values for eye opening, verbal, and motor responses were combined into a single score ranging from 3-15. This combined score has become the main focus of our attention, with less interest in the individual components.

Here is the original GCS:

Forty years later (2014), there was interest in tweaking it to overcome a few of the perceived shortcomings. Two relatively small changes were made. First, a few terminology changes were made in the eye opening and verbal response components. Eye opening was clarified to indicate opening to pressure, not pain, and speech, not sound. Verbal response was also clarified, changing “incomprehensible” to “sounds”, and “inappropriate” to “words.”

Additionally, when eye opening or verbal response could not be tested (swelling, intubation), the value was scored as a 1. This was changed in 2014, so that the non-testable components are now marked “NT” and the total score should not be calculated.  Here’s an example:

  • Original GCS: E1 V1T M3 = 5T
  • GCS-40: E1 V-NT M3   (no total)

Here’s the new GCS-40 description published in 2014:

Finally, this year Teasdale and associates added one final tweak. They incorporated an indicator of pupillary response. This table shows the levels of response:

This factor is subtracted from the GCS-40, now resulting in score that can range from 1-15. Addition of this component greatly improves our ability to predict outcome.

Why does all this matter? One important reason is that the American College of Surgeons Trauma Quality Improvement Program will begin accepting data in 2019 with GCS 40 data. The National Trauma Databank data definitions will also incorporate GCS 40 in next tear. It looks like there will be a phase-in period where either system can be used. I could not find any indication that the pupillary score would be included any time soon.

I’m sure research will continue on this staple of trauma evaluation. Expect more tweaks in the future as we try to improve our ability to follow our patients clinically and predict how well they will do.

Print Friendly, PDF & Email

GCS At 40: Pediatric Glasgow Coma Scale

I’ve been discussing the Glasgow Coma Scale (GCS), but only the adult version so far. The pediatric GCS was created about 10 years after the classic adult scale after it was recognized that several of the scores were not appropriate for younger non-verbal children, typically less than one year of age. It has been validated several times over the ensuing years and has been integrated into our trauma practices.

So what is different about the pediatric GCS scale? It has the same three main components, eye opening, best verbal response, and best motor response. The number of scores under each remains the same as well. The major changes occurred in the verbal response scores. Here’s the breakdown; I’ve highlighted the differences.

Eye Opening

  • All components are the same as for adults

Best Verbal Response

  1. No response to stimuli
  2. Inconsolable, agitated
  3. Inconsistently inconsolable, moaning
  4. Cries but consolable. Has appropriate interactions.
  5. The child smiles, orients to sounds, follows objects, and interacts with adults

Best Motor Response

  1. No response to stimuli
  2. Decerebrate posturing (extension to stimulation, see the adult post for details)
  3. Decorticate posturing (flexion to stimulation, see the adult post for details)
  4. Withdraws from pain
  5. Withdraws from touch
  6. Spontaneous, purposeful movement

In my next post in the series, I’ll review what’s new with the GCS-40 score.

Reference: Neurologic evaluation and support in the child with an acute brain insult. Pediatric Annals 15(1):16-22, 1986.

Print Friendly, PDF & Email

GCS At 40: The Current GCS Scale (Adult)

My last post provided some history about the original Glasgow Coma Scale (GCS). Today, I’ll provide some of the finer details of measuring the components of the current iteration of GCS (not GCS-40). I will list out the individual scale values, and explain some of the most misunderstood.

As you know, there are three components to the GCS. Let’s examine each:

Eye Opening

  • 4 – This is an easy one. The eyes are open, and they are opened spontaneously.
  • 3 – Eyes open to your voice. If your patient is asleep and they awaken, the E score is actually 4. If they only open their eyes to repeated voice prompts, then it is a 3.
  • 2 – Eyes open only to pain or stimulation. This is typically tested by squeezing a fingernail, but the exam should progress as described in the Nuances section below.
  • 1 – This one is easy, too. The eyes don’t open, no matter what.

What if the eyes are swollen shut? Then record it as E1c (c = closed).

Verbal Response

  • 5 – Your patient is oriented and converses with you spontaneously.
  • 4 – Confused. This means that you can talk with your patient and they respond in sentences, but you can detect some confusion or disorientation based on their speech.
  • 3 – Inappropriate words. Remember it this way: your patient speaks like a 3-year-old. They can say a few words but can’t construct a meaningful sentence.
  • 2 – Incomprehensible sounds. This means that your patient may moan or make noises, but does not form any words.
  • 1 – No verbal response at all.

If the airway is controlled with an endotracheal tube, then the score is recorded as V1t.

Motor response

  • 6 – Your patient obeys commands.
  • 5 – Localizes to pain. Your patient will move toward a painful stimulus in an attempt to remove it. They can move their arms/hands above their chin in response to facial stimulation.
  • 4 – Withdrawal from pain. Patients cannot move their arms above the chin.
  • 3 – Flexor response (decorticate posturing). This score, and the next one (2), are the ones that I always confuse. Just remember that the patients reach for the “core.” They flex their forearm and wrist, clench their fist, extend their legs, and point their toes (plantar flex).

  • 2 – Extensor response (decerebrate posturing). These patients bring their arms to their sides (adduct), extend the elbow but flex the wrist and fingers, and pronate the forearms. Legs and feet are the same as above.

  • 1 – No response to stimuli.

Nuances

  • Record the entire score. This means all components and modifiers. An example would be E3 V4 M4 = 11, or E1c V1t M3 = 5, or E1 V1 M2rt M3lt = 4/5
  • Alcohol or drug intoxication will interfere with accurate measurement of the GCS, especially with the verbal and eye-opening components.
  • If the motor score is asymmetric (higher on one side than the other), record the higher score. Or better yet, break out the motor scores for both sides so your friendly, neighborhood neurosurgeon has a better idea of what is going on.
  • Stimulation should proceed from fingernail squeeze, to pinching the trapezius muscle, to pressure in the supra-orbital notch, in that order. The sternal rub is to be discouraged, as it can lead to bruising.

In my next post, I’ll describe the differences in the Pediatric Glasgow Coma Scale.

Print Friendly, PDF & Email

GCS At 40: The Original GCS

The Glasgow Coma Score (GCS) has been in use for more than 40 years. Since that 40th anniversary a few years back, there has been talk of updating this tried and true system. But where did this scale come from? How was it devised? And why are we looking to update it now? I’ll dig into this topic over my next several posts.

The original paper describing the GCS was published in 1974 by Graham Teasdale and Bryan Jennett. They were neurosurgeons at the Institute of Neurologic Sciences in Glasgow, Scotland (of course) and were based in the Southern General Hospital. Until this paper was published, each report in the literature described its own assessment of level of consciousness. Most divided the spectrum into various steps noted between fully alert and comatose. Unfortunately, these systems were confusing, and they varied from 3-17 steps! There was just no consensus. Some relied on a comprehensive neurologic exam, including brainstem function tests. However, none of these were really designed for repeated bedside assessment.

Teasdale and Jennett settled on three simple areas to examine: eye-opening, motor response, and verbal response. They selected easily observable responses for each of these components. Here is a copy of the original scale:

Notice that this differs from the current-day score. The motor response did not have a “withdrawal” option, so the maximum score was only 14! But that didn’t matter much at the time; the individual components were graphed out over time for inspection. A total score was not generally calculated.

Teasdale and Jennett found that inter-rater reliability for this system was excellent, compared to a 25% discrepancy for other less objective systems in use at the time. This led to its rapid adoption over the coming years.

In my next post, I’ll describe how GCS came to be used over the ensuing years.

Print Friendly, PDF & Email