Tag Archives: trauma activation

When Did The Surgeon Arrive At The Trauma Activation?

All trauma centers have mandatory arrival requirements for the surgeon at their highest-level trauma activations. Most Level I and II centers abide by the American College of Surgeons (ACS) requirement of 15 minutes after patient arrival. Level III centers typically mandate 30 minutes for their highest-level activation. And failure to meet these criteria can actually lead to loss of verification.

But what is the best way to record this critical piece of information? A number of methods have been used over the years. The earliest was simply recording the time of surgeon arrival on the paper trauma flow sheet. This has evolved over the years as technology has advanced. Most hospitals have installed badge swipe systems, since name badges have become nearly ubiquitous for gaining access to restricted areas within the hospital. A paper published last year details one hospital’s experience using a badge swipe system to do just this.

A NYC metro area Level I center started using a name badge swipe system to record the surgeon’s arrival in the ED for trauma activations several years ago. They examined their trauma activation data over a 7 month period at the end of 2016. Surgeon arrival times were recorded on the trauma flow sheet, and the electronic swipe information was included to supplement flow sheet results.

Here are the factoids:

  • There were 531 trauma activations during the study period, with 50 highest-level activations and 481 limited activations
  • The overall paper trauma flow sheet completion rate was 50% without card swipe data (!!)
  • For highest-level activations, surgeon presence was documented in 76%, but they arrived on time (< 15 minutes) only 70% of the time (!!!)
  • For intermediate-level activations, surgeon arrival was recorded 47% of the time and the surgeon was on time 45% of the time (I’m running out of exclamation points!!)
  • After including the badge swipe data, overall completion rate “improved” to 70%, which broke down to 90% in highest-level and 68% in the intermediate level activations
  • Surgeon compliance with arrival times improved to 84% and 63% for the two activation levels

The authors blamed the poor record keeping and compliance on “the fast pace of an ED.” They concluded that the badge swipe system was successful in increasing documentation and arrival compliance.

Bottom line: Oh, this is a fail on so many levels! First, surgeon arrival timeliness was appalling both with and without the badge swipe data. It started at 50% and increased to a barely passing score of 84%. And since this center only receives 100 highest-level activations per year, just a few more slip-ups could easily result in their loss of Level I verification. The increase in arrival compliance after adding badge data could be due to better documentation or better response because the surgeon knew they were being watched (Hawthorne effect).

Obviously, there are many reasons for documentation problems. The surgeon may have, indeed, been late. The scribe may not have been paying attention, or forgot to write the time in because things were busy. The flow sheet could be poorly designed, or worse, electronic.

The addition of technology to overcome human limitations is not the panacea many think it is. First, it’s expensive, especially if new gadgets are being purchased. In this case, it’s the same card swipe technology that is already present in the hospital. So there’s no additional cost in this case.

But it is always more work for some of the humans involved. Card swipe systems do not automatically integrate with a trauma flow sheet, even an electronic one. So some poor human will be tasked with getting the badge swipe report from security. Then, they will have to pore over the myriad card swipes and match the activation times to the data seen on the report. This can be time consuming in a busy ED.

I am still a big believer in personal responsibility. The key players, namely the surgeons, need to feel responsible for reporting their arrival time as a statistic vital to verification of their center. Only when they actually do, and this becomes part of the culture of the entire trauma team, will documentation and compliance approach perfection!

Reference: Implementation of a Radio-frequency Identification System to Improve the Documentation and Compliance of Attending Physicians’ Arrival to Trauma Activations. Cureus 10(11):e3582, 2018.

Glasgow Coma Scale For Trauma Activation: What’s The Optimal Score?

Last month, I posted a survey to  find out the Glasgow Coma Scale (GCS) values trauma centers were using to trigger their highest level trauma activation. Nearly 150 people responded, providing a nice snapshot of practices worldwide. Today, I’ll summarize the responses and provide a bit of commentary about them.

There were a total of 147 respondents from around the world. I tried to eliminate duplicates from the same center using a self-reported postal code. However, this was an optional field, so there is the possibility that a few crept in. Readers from at least six countries outside the US also responded.

The question  was: “What is the highest GCS score that triggers a top-level trauma activation at your trauma center?”

Here is a chart that shows the results. The proper way to read it is “a trauma activation is called if GCS < xx” where xx is the score under the bar in the chart.

The whole point to calling a trauma activation is to have the full trauma team and infrastructure (labs, imaging, blood, etc.) in place to rapidly assess a patient with life-threatening injuries. In theory this should afford them the best probability of survival.

So what is the optimal GCS score to activate your trauma team? Unfortunately, this remains difficult to answer exactly. From the chart, you can see that the most common scores were 8, 9, and 13. Why such a spread?

The GCS 8 and 9 levels are a no-brainer (ha!). These patients are comatose or nearly so, and obviously need prompt attention such as airway control, head CT, and neurosurgical consultation. But what about the patients with GCS 13? They have lost two points, typically for eye-opening and verbal response. This may indeed indicate  a significant head injury. But all too often we see this same score in patients who are intoxicated. Do we really need (or want) to activate the full team for each and every intoxicated patient? Can we screen them out in some way?

The answer to both questions is yes. The most important tip is to know your patient population. There is an association between GCS and need for operative intervention that was oft-quoted in the ATLS course. However, I have not been able to find a definitive paper on this topic.

I recommend that you tap into your trauma registry and create a chart that shows presenting GCS vs early neuro-intervention (ICP monitor or craniectomy within 24 hours). Find the GCS score where you see a “significant” bump in the number needing a procedure, and use this as your trauma activation threshold. This report will automatically take into account the number of intoxicated patients you treat.

I would also recommend you do a separate report on age vs need for neuro-intervention with GCS<15. The older population tends to require craniectomy for TBI more often and at higher GCS levels than younger people. You may factor this into your single GCS criterion, or add a separate one at a different level for patients over 55, or 60, or whatever reflects your patient age mix.

Bottom line: Make sure your GCS trauma activation criteria adequately identify your patients who truly have a need for speed in their trauma evaluation. A GCS of 8 or 9 may be too low, and a score in the teens is probably more appropriate for most centers. Use your trauma registry to determine the best score for you so you can capture the patients who have critical needs while trying to keep overtriage under control.

 

The Trauma Activation Pat-Down?

Yes, this is another one of my pet peeves. During a trauma activation, we all strive to adhere to the Advanced Trauma Life Support protocols. Primary survey, secondary survey, etc. Usually, the primary survey is done well.

But then we get to the secondary survey, and things get sloppy.

police_frisk1

The secondary survey is supposed to be a quick yet thorough physical exam, both front and back. But all too often it’s quick, and not so thorough. There is the usual laying on of the hands, but barely. Abdominal palpation is usually done well. But little effort is put into checking stability of the pelvis. The extremities are gently patted down with the hope of finding fractures. Joints are slightly flexed, but not stressed at all.

Is it just a slow degradation of physical exam skills? Is it increasing (and misguided) faith in the utility of the CT scanner? I don’t really know. But it’s real!

Bottom line: Watch yourself and your team as they perform the secondary survey! Your goal is to find all the injuries you can before you go to imaging. This means deep palpation, twisting and trying to bend extremities looking for fractures, stressing joints looking for laxity. And doing a good neuro exam! Don’t let your physical exam skills atrophy! Your patients will thank you.

Best Practice: Laundry Basket In The Resus Room?

How do you get patients out of their clothes during a trauma resuscitation? Most of the time, I bet your answer is “with a pair of scissors.” And once they are off, what do you do with them? Admit it. You just throw them on the floor. And sometime later, someone’s job is to find it all, put it in a bag, and store it or hand it over to the police.

There are more problems than you might think with this approach. First, and most importantly to the patient, their stuff can get lost. Swept up with all the other detritus from a trauma activation. And second, their belongings may become evidence and it’s just been contaminated.

So here’s an easy solution. Create a specific place to put the clothes. Make it small, with a tiny footprint in your trauma room. Make it movable so it can be kept out of the way. And make sure it is shaped so it can contain a large paper bag to preserve evidence without contamination.

And here’s the answer:

Yes, it’s a plain old laundry basket. The perfect solution. And best of all, these are dirt cheap when you are used to seeing what hospitals charge for stuff. So your ED can buy several ($14.29 ea on Amazon.com) in case they can’t be cleaned anymore or just disappear.

The ACS “Gang Of 6” Trauma Activation Criteria

For more than 10 years, all trauma centers verified by the American College of Surgeons (ACS) have been required to have a group of mandatory criteria for their highest level of trauma activation. I call these the gang of 6 (ACS-6). They are:

  1. Hypotension (systolic < 90 torr for adults, age specific for children)
  2. Gunshot to neck, chest, abdomen or extremities proximal to elbow or knee
  3. GCS < 9 from trauma
  4. Transfer patients receiving blood to maintain vital signs
  5. Intubated patients from scene or patients with respiratory compromise transferred in (may already be intubated but still having compromise)
  6. Emergency physician discretion

For the most part, it seems obvious that any one of these criteria would indicate a seriously injured patient needing rapid trauma team evaluation. But do all centers use these criteria?

The answer, detailed in a recently published paper, would seem to be no! Researchers at the Universities of Minnesota and Michigan looked at the Trauma Quality Improvement Program database for all Level I and II centers in Michigan over a three year period. They specifically analyzed the data to determine how many centers used all 6 criteria, and any differences in mortality between those that did and those that didn’t. They reviewed records for adults with blunt and penetrating trauma with an ISS > 5.

Here are the factoids:

  • More than 50,000 patient records were reviewed, and 12% met at least one of the ACS-6
  • Only 66% of patients with at least one ACS-6 criterion were full trauma activations (!!)
  • Compliance was poorest with hypotension (only half activated), compared to intubation (75%), central gunshot (75%), and coma (82%)
  • 79% of patients meeting any ACS-6 criterion needed an intervention, with a third going emergently to the OR
  • Undertriaged patients (ACS-6 with no high level activation) were significantly more likely to die (30% vs 21%), and this was most pronounced in the coma group (47% vs 40%)

Bottom line: Physiologic trauma activation criteria are important, as is the central gunshot one! Although this is a database review subject to the usual flaws (retrospective, data accuracy), the numbers are large and the statistics are sound. And remember, this is an association study, so we don’t really know why the mortality numbers were different, just that they were.

Nevertheless, there is a lot to learn from it. Why don’t all centers use the ACS-6? They certainly have them in their criteria list, or they would have failed their verification visit. It’s because of undertriage! How does this happen? Two ways: either the information in the field is incorrect (GCS may be incorrectly estimated, hypotension may be transient), or personnel in the ED failed to activate properly.

This study shows the importance of rigidly adhering to the criteria. It found a 20% mortality reduction if all of the ACS-6 were applied properly. So make sure that your own trauma program regularly monitors for undertriage, especially with respect to the “gang of 6”!

Related posts:

Reference: Noncompliance with American College of Surgeons Committee on Trauma recommended criteria for full trauma team activation is associated with undertriage deaths. J Trauma 84(2):287-294, 2018.