Category Archives: New technology

New Technology: Blood Type In 30 Seconds!

This one is really exciting! Blood banks typically keep a significant number of units of O- “universal donor” blood available. These units can be given immediately when a trauma patient in need arrives, since it contains no antigens to the common blood types. It takes anywhere from 5-15 minutes for the blood bank to determine the blood type from the patient’s blood. Then and only then can they begin delivering “type specific” blood that matches the patient’s blood type.

Researchers at the Third Military Medical University in China have developed a paper-based test to determine the ABO type as well as the Rh type (D). Indicators for A, B, and D antigens turn a blue color when they are present, allowing the clinician or blood bank to accurately determine the blood type in 30 seconds. 

Why is this important? O- is an uncommon blood type, with only about 6% of the US population carrying it. Yet blood banks have to keep an inordinate amount in stock “just in case.” Using a blood type test like this could significantly cut down on unnecessary use of this rare O- blood. Unfortunately, it will be 1-2 years before the test is commercially available. I’m sure our nation’s blood bankers can’t wait!

Here’s a brief video that demonstrates how it works.

Reference: A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping. Science Translational Medicine 15 Mar 2017:
Vol. 9, Issue 381, eaaf9209.

Print Friendly, PDF & Email

Using Your Hybrid OR For Trauma

Every hospital wants some gadget or other. First, it was a robot. Or two. Now, it’s a hybrid operating room.

lourdes-hybrid-or1

What is this, you ask? It’s a mashup of an operating room and an interventional radiology suite. It’s new. It’s big. It’s cool (literally, which is an issue for trauma surgeons).

More and more hospitals are adding hybrid rooms at the request of their vascular surgery teams. These rooms allow for both angiographic and open operative procedures, potentially at the same time. They are perfect for endovascular procedures that need some degree of hands-in work as well. They are frequently used for thoracic endovascular repair of the aorta (TEVAR), repair of abdominal aortic aneurysm (AAA), and transcatheter aortic valve replacement (TAVR).

These rooms would seem to be perfect for some trauma cases as well. Some injuries require a mix of interventional work and open surgery. Think complex pelvic fractures and extremity vascular injuries.

But before you go rushing off to the hybrid room with the next patient you think might benefit from it, consider these issues:

  • You must first secure access to the hybrid room. Just because you want it doesn’t mean you can get it. This room was probably built with other services in mind. You must work with them closely to set up rules and priorities. Consider questions like, can a trauma case bump an elective one?
  • Decide what specific cases can be done in the room. Don’t waste it on procedures that can be done in any old OR. Ideally, it is for multi-team cases and must take advantage of the radiographic capabilities of the hybrid room. If it doesn’t, it should be done in any other room of appropriate size.
  • Check your hardware. Make sure that anything you might attach to the hybrid table actually will attach to it. Frequently, the side rails are missing and the table thickness is different than a standard OR table. Check all of your retractor systems for compatibility. If your neurosurgeons use a skull clamp like a Mayfield, make sure it will attach to the table. If they do not, look for adapters to make it possible. Don’t discover this on your first trip to the room.
  • Watch for hypothermia! These are big rooms, and are difficult to heat up uniformly. In addition, the electronics in the room may be heat sensitive, so you may not be able to raise the temperature to the levels you are accustomed. Place heating systems under and around the patient as much as possible, warm everything that goes into them, and monitor their temp closely.
  • Treat the equipment with respect.  This stuff is delicate, and must be used by other surgeons for sensitive procedures. Don’t break it!

Related posts:

Print Friendly, PDF & Email

New Technology: The AED Drone

The media tends to give drones a bad name. And certainly, there are careless operators out there who may give drone operators a bad name. But it seems that everyone is getting in the game. Amazon wants to use drones to deliver your orders. Police use them to find missing people, and criminals. Parks use them to protect animals and property.

But how about some medical uses? Sure, they can be used to access austere environments, and potentially to deliver medical supplies. But here is an example of a very creative use. It’s an AED drone!

This drone was designed from the ground up to provide emergency assistance for cardiac arrest. It’s got audio, video, and is a flying defibrillator. Watch this 3 minute video to see how it works and how it was made.

Print Friendly, PDF & Email

The Ultimate 3D Bioprinter?

3D printing is becoming a big deal when it comes to replacement parts for people. Substantial advances have been made over the past 5 years, and a new printer under development from a company called Aether looks more advanced than most others in the field.

Most printers have a relatively limited number of biomaterials (”inks”) that they can print at one time, and many of the actual materials are proprietary. They tend to be very expensive, sometimes $200,000 or more.

Aether has developed what I would call a great “pilot” printer to demonstrate that this can be done better and more cheaply. The printer in the 8 minute video is printing two pieces of bone connected with a tendon. In this case, the printer uses 6 “inks” including graphene for bones and stem cells to seed them as well as the tendon. The printer can actually print a mix of organic and organic “inks” with up to 10 syringes (”cartridges”). And in this case, it actually embeds two transistors and wires in the product. Printing bionic parts? And the final cost of this printer is projected to be under $10,000.

A number of other companies are out there competing in this market. They are providing tissue samples and skin for drug testing and research. So expect technology to advance and prices to fall as these printers become more sophisticated and more clinically useful.

Website: http://www.aether1.com/

I have no financial interest in Aether.

Print Friendly, PDF & Email

Everything You Always Wanted To Know About: REBOA!

REBOA has become one of the hot topics that everyone seems to be talking about (and writing about). As with any hot new trend, it’s important to understand the facts, as much as they’ve been worked out. The enthusiasts are, by definition, always very enthusiastic, and sometimes the hype overshadows the reality.

During the next week, I’m going to methodically make my way through the basics, like what it is, how we came up with the idea, and what it entails. Then I’ll look through the literature as we know it. Finally, I’ll try to put it all together and make some recommendations about what you should be doing with it.

Tune in, starting Tomorrow!

Direct links to the REBOA series:

Print Friendly, PDF & Email