Tag Archives: MTP

EAST 2019 #11: Thawed Plasma And Rural Trauma Centers

A massive transfusion protocol must be available at all trauma centers, large and small, urban and rural. In an ideal setting, attempts are made to keep the ratios of red blood cells to plasma transfused somewhere between a 1:1 and 2:1 ratio. Unfortunately, many hospitals do not keep any thawed plasma because of its 5-day shelf life, so they must resort to thawing it on demand. This process is slow and may take 20-40 minutes, so it is often difficult for these centers to keep within the optimal ratios.

The group at the Guthrie Clinic, a Level II trauma center in northern Pennsylvania, tried a novel approach to thawed plasma availability: keeping two units continuously available in the ED for trauma use only. After three days, these units were returned to the blood bank for general use and were replaced with new ones. They reviewed their one year experience with wasted plasma and compared it with the two years prior to implementation.

Here are the factoids:

  • The blood bank thawed 1127 units during the study period; 274 units were placed in the trauma bay
  • There was a significant increase in waste and cost of wasted products
  • Yet the authors did not find an increase in the relative cost of plasma waste
  • The average cost to maintain access to plasma in the trauma bay was $117 per month
  • The authors concluded that the increased waste and cost were insignificant compared to the cost of total blood bank waste (?)

Here are some questions for the authors and presenter to consider in advance to help them prepare for audience questions:

  • What do all the terms mean, like relative cost? I’m confused that the cost of waste is significantly higher, but not the relative cost. Please explain in your presentation.
  • Is the $117/month to maintain access just for the refrigerator itself and any other support hardware or software? It’s not clear if this includes any part of the blood product cost.
  • Why not keep the plasma in the blood bank? Even though it might still be wasted, couldn’t you save the $117 monthly and avoid the hassle of trying to find a cubby to put the ED blood refrigerator in?
  • Why is 3 days your magic number? Did you consider doing a simulation after you completed the study to see what would have happened if you picked 2 or 4 days in the ED instead?

This is a very creative approach to stocking perishable goods that are infrequently used. I look forward to hearing the presentation.

Reference: A novel protocol to maintain continuous access to thawed plasma at a rural trauma center. EAST 2019, Quick Shot Paper #14.

An Audit Tool For Your Massive Transfusion Protocol

Every trauma center is required to have a massive transfusion protocol (MTP). This protocol lays out in precise detail how large quantities of blood products get to and into your patient when needed. It’s important to have all of these processes worked out in advance so that the products are safely and rapidly available.

But what happens after the MTP winds down is equally important. Without a detailed analysis of the entire process, it’s impossible to know if all of its components worked as planned. While a few centers activate the MTP frequently enough to be smooth and well-practiced, many do not. For those, it’s even more critical to pick each activation apart, looking for ways to improve.

Here are some of the important things to review:

  • Demographics
  • Components used for ratio analysis
  • Lab values (INR, TEG, Hgb)
  • Logistics
  • Waste

Bottom line: I’ve included links to two audit tools below. The Broxton tool is more rudimentary, but is a good start. The Australian tool is excellent, in my opinion. It covers all the bases, and allows the center to get meaningful information and/or research material from the data.

Do you have a great MTP audit tool? Please send me a copy so I can share.

Related posts:

Liquid Plasma vs FFP: Impact On Your Massive Transfusion Protocol

In my last post, I discussed the growing number of choices for plasma replacement. Today I’ll look at some work that was done that tried to determine if any one of them is better than the others when used for the massive transfusion protocol (MTP).

As noted last time, fresh frozen plasma (frozen within 8 hours, FFP) and frozen plasma (frozen within 24 hours, FP) have a shelf life of 5 days once thawed. Liquid plasma (never frozen, LQP) is good for the 21 days after the original unit was donated, plus the same 5 days, for a total of 26 days.

LQP is not used at most US trauma centers. It is more commonly used in Europe, and a study there suggested that the use of thawed plasma increased short term mortality when compared to liquid plasma. To look at this phenomenon more closely, a group from UTHSC Houston and LSU measured hemostatic profiles on both types of plasma at varying times during their useful life.

All products were analyzed with thromboelastography (TEG) and thrombogram, and platelet count and microparticles, clotting factors, and natural coagulation inhibitors were measured. They chose 10 units of thawed FFP and 10 units of LQP, and assayed them every 5 days during their useful shelf life.

Here are the factoids:

  • Platelet counts were much higher in day 0 LQP (75K) vs day 0 thawed plasma (7.5K). Even at end of shelf life, the LQP was 1.5x higher than thawed (15K vs 10K).
  • Thrombogram showed that LQP had higher endogenous thrombin production until end of shelf life
  • TEG demonstrated that LQP had a higher capacity to clot that gradually declined over time. It became similar to thawed plasma at the end of its shelf life.
                         (TEG MA for liquid (LQP) and thawed (TP) plasma
  • Most clotting factors remained stable in LQP, with the exception of Factors V and VIII, which slowly declined

Bottom line: Liquid plasma sounds like good stuff, right? Although there are a few flaws in the collection aspect of this study, it gives good evidence that never frozen plasma has better coagulation properties when compared to thawed plasma. Will this translate into better survival when used in the MTP for trauma? One would think so, but you never really know until you try it. Our hospital blood bank infrastructure isn’t prepared to handle this product yet, for the most part. What we really need is a study that shows the survival advantage when using liquid plasma compared to thawed. But don’t hold your breath. It will take a large number of patients and some fancy statistical analysis to demonstrate this. I think we’ll have to look to our military colleagues to pull this one off!

Reference: Better hemostatic profiles of never-frozen liquid plasma compared with thawed fresh frozen plasma. J Trauma 74(1):84-91, 2013.

How To Remember To Give The TXA!

The CRASH-2 study did a good job of demonstrating the value of giving tranexamic acid (TXA) in patients with major hemorrhage. The kicker is that the data seemed to show that the effect was best if given early, and might even be detrimental after 3 hours.

The reality is that most patients with major hemorrhage will present as a trauma activation. And if they really are bleeding badly, they will probably trigger your massive transfusion protocol (MTP). But at the same time, they will probably keep you very busy, and it’s easy to forget to order the TXA.

How can you make sure to start the TXA promptly on these patients? Easy! Check out this picture:

Yes, that’s a cheat sign right on top of the first cooler for the MTP! Have the blood bank include this sign in the cooler, so that everyone can see it when you crack the cooler open to give the first units of blood products.

In most hospitals, TXA is a pharmacy item. It should be stocked in the ED, and not in a far away pharmacy satellite. And don’t forget that TXA is given twice, 1 gram given over 10 minutes (or just IV push for speed), followed by another gram infused over 8 hours.

Related posts:

New Technology: Blood Type In 30 Seconds!

This one is really exciting! Blood banks typically keep a significant number of units of O- “universal donor” blood available. These units can be given immediately when a trauma patient in need arrives, since it contains no antigens to the common blood types. It takes anywhere from 5-15 minutes for the blood bank to determine the blood type from the patient’s blood. Then and only then can they begin delivering “type specific” blood that matches the patient’s blood type.

Researchers at the Third Military Medical University in China have developed a paper-based test to determine the ABO type as well as the Rh type (D). Indicators for A, B, and D antigens turn a blue color when they are present, allowing the clinician or blood bank to accurately determine the blood type in 30 seconds. 

Why is this important? O- is an uncommon blood type, with only about 6% of the US population carrying it. Yet blood banks have to keep an inordinate amount in stock “just in case.” Using a blood type test like this could significantly cut down on unnecessary use of this rare O- blood. Unfortunately, it will be 1-2 years before the test is commercially available. I’m sure our nation’s blood bankers can’t wait!

Here’s a brief video that demonstrates how it works.

Reference: A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping. Science Translational Medicine 15 Mar 2017:
Vol. 9, Issue 381, eaaf9209.