Tag Archives: MTP

MTP And The Blood Availability Trap In Trauma Team Activations

Early availability of blood is a key component in the successful resuscitation of severely injured trauma patients. All trauma centers have implemented massive transfusion protocols (MTP) to ensure rapid delivery of blood products to the trauma bay.

Unfortunately, locating the blood bank in some remote corner of the basement is common practice, as far from the trauma bay as possible. This guarantees a delivery delay once the MTP is activated. To offset this, many centers have implemented policies to make a limited quantity of blood products available in the trauma bay.

This supply can be located in a blood refrigerator located nearby. Or it may be a practice of calling for emergency release blood if the trauma professionals believe it might be necessary. Some trauma centers have codified this so that highest-level activations automatically have a cooler of blood products delivered, hopefully before patient arrival.

However, I have observed while visiting numerous centers that this often causes an unintended consequence. It can actually slow MTP activation!

How can that be, you say? It’s simple. Critically injured patients result in an intense and highly charged trauma activation. The surgeon is concentrating on keeping the patient alive and orders the emergency release blood to be hung. The resuscitation continues. “Hang another unit.” And so on.

Eventually, the temporary supply runs out. Then everybody looks at each other and does a facepalm. Nobody thought to activate the MTP!

How can this be avoided? The key is to do everything possible to activate it from the very start. Here are some tips:

  • Use an objective scoring system to trigger MTP. The two most common ones are the ABC score and the Shock Index. Both are easy to calculate, and can frequently be used based on the prehospital report. This means the MTP can be activated before the patient even arrives.
  • If you open the blood refrigerator or touch the emergency release blood, activate the MTP. This will give you two to four units to buy time for the first MTP cooler to arrive.
  • Empower everyone in the trauma bay to speak up. Make sure everyone knows the rules listed above, and encourage them to speak up if they see that any of them are met. “Team leader, should we activate the MTP?”
  • Don’t be shy! If you only transfuse one unit of refrigerator blood and stop, no harm, no foul. The unopened MTP cooler can be sent back to the blood bank with no risk of waste.

Bottom line: Don’t get suckered into forgetting to activate the MTP just because it looks like you have blood available. Automate the process so you never run out again.

MTP Activation Criteria For Pediatric Patients

Early resuscitation, particularly with blood products in patients with hemorrhage, is literally a lifesaver.  As each minute ticks by, survival slowly diminishes. To facilitate this, massive transfusion protocols (MTP) have been designed to rapidly deliver sizable quantities of blood products to the trauma resuscitation bay.

One of the recurring issues I see at trauma centers is the lack of a reliable way of activating the MTP. Many centers publish what I consider “psychic criteria.” These promote criteria that involve the amount of blood loss over four or twenty-four hours. Who even knows?

Delays in activating the MTP frequently occur because no one thinks about it when a critically injured patient arrives. All of the trauma professionals are busy with the patient and are rudely surprised when they ask for the first unit of blood.

Objective MTP activation criteria have been developed and are well-supported by the literature. The ABC score and the shock index are two of the more common methods. Both are based on observations made upon patient arrival (and possibly before if a prehospital report is received).

The ABC score uses four criteria:

  • Heart rate > 120
  • Systolic blood pressure < 90
  • FAST positive
  • Penetrating mechanism

If any two of these are present, there is a 50% chance that massive transfusion is warranted.

The Shock Index (SI) uses the initial vital signs to perform a quick and dirty calculation by dividing the heart rate by the systolic blood pressure.  A score greater than or equal to one predicts at least a 2x higher need for blood. Of the two, SI is more easily calculated and gives a marginally more accurate result.

But what about children? The ABC score was evaluated in pediatric patients and was found to be much less sensitive than in adults. Combining the ABC score with an age-adjusted Shock Index improved the accuracy only slightly. This was named the ABC-S score.

Several adult and pediatric trauma centers in the Denver area collaborated to test a new score using the ABC-S score in combination with serum lactate and base deficit. This was termed the ABC-D score. Clever.

Here are the factoids:

  • A retrospective review of patients aged 1-18 from a single trauma registry who had received a blood transfusion during their initial care
  • The study included 211 children, of whom 66 required massive transfusion
  • The three methods listed above were compared, and the ABC-D score was found to be the most predictive of MTP
  • ABC-D was 77% sensitive and 79% specific
  • The authors showed that the accuracy and balance between sensitivity and specificity improved for each point increase in the ABC-D score.
  • They concluded that ABC-D may be a useful tool to expedite the delivery of blood products during a trauma resuscitation.

Bottom line: Hmm. The system that they developed and the analysis of their experience appears to be sound. But unfortunately, it fails the practicality test. Here’s the sticking point. How long does it take to obtain that initial blood specimen, send it to your lab, and then return stat results to your trauma bay? Once you receive the results, you then activate the MTP and wait another 5-10 minutes for the first cooler to arrive!

That’s an awful long time to wait for blood while you watch a child hemorrhaging in front of you. So what to do? For now, use one of the existing systems to make a rapid decision. And always err on the side of activation. You can always send the blood back if you don’t need it!

Reference:  The ABC-D score improves the sensitivity in predicting need for massive transfusion in pediatric trauma patients. J Pediatr Surg. 2020 Feb;55(2):331-334. doi: 10.1016/j.jpedsurg.2019.10.008. Epub 2019 Nov 1. PMID: 31718872.

Crafting And Refining Your Massive Transfusion Protocol – Part 4

It’s more on the massive transfusion protocol (MTP). I’ll continue today with MTP activation triggers.

What criteria should trigger your massive transfusion protocol? Sometimes, it’s obvious. The EMS report indicates that your incoming patient is in shock. Or there was notable blood loss at the scene. Or they have a mangled extremity and will need blood products in the OR, if not sooner.

But sometimes the need for ongoing and large quantities of blood sneaks up on you. The patient is doing well but has an unexplained pressure dip. And it happens again. You give one of your  uncrossmatched units of blood. It happens again. At some point, you come to the realization that you’ve given six units of blood and no plasma or other products! Ouch!

Many trauma centers have adopted MTP criteria like:

  • More than 4 units given over 4 hours
  • More that 10 units to be given over 24 hours
  • Loss of half a blood volume over 24 hours

I call these the “psychic power” criteria, because one must surely be prescient to know this information just shortly after the patient arrives. Don’t include criteria like these at your center!

Instead use some sort of objective criteria. A simple one is the use of any of your blood refrigerator products or emergency release blood, or a calculated score such as the ABC score or shock index (SI).

ABC score is the Assessment of Blood Consumption score and gives one point each for a heart rate > 120, SBP < 90, positive FAST, penetrating mechanism.  ACS score > 2 was predictive of requiring MTP with sensitivity and specificity of about 85%. Overtriage was about 15%.

Shock index (SI) is defined as the heart rate divided by the SBP. Normal values are in the range of 0.5 to 0.7. Need for MTP was found to increase to 2x for SI of 0.9, 4x with an SI of 1.1, and 7x with SI 1.3.

One paper compared these two systems retrospectively on 645 trauma activations over a 5-year period. They found that they both worked well with the following results:

  • Shock index > 1 – 68% sensitive 81% specific
  • ABC > 2 – 47% sensitive, 90% specific

The study suggests that shock index is more sensitive, and takes less technical skill to calculate. Bottom line: just pick the some objective criterion you are most comfortable with and use it!

Reference: Accuracy of shock index versus ABC score to predict need for massive transfusion in trauma patients. Injury 49(1): 15-19, 2018

Well folks, that’s it for the MTP series! Hope you enjoyed it. Feel free to email or leave a comment with any questions or suggestions!

Crafting And Refining Your Massive Transfusion Protocol – Part 3

Let’s continue with my series on the massive transfusion protocol (MTP). I’ll continue today with information on deactivating and analyzing your MTP.

Deactivation. There are two components to this: recognizing that high volume blood products are no longer needed, and communicating this with the blood bank. As bleeding comes under surgical control, and CBC and clotting parameters (and maybe TEG/ROTEM) normalize, the pace of transfusion slows, and ultimately stops. Until this happens, the MTP must stay active. Even a low level of product need should be met with coolers stocked with the appropriate ratios of products.

There are two ways to stop the MTP: the surgeon or their surrogate calls the blood bank (when no more blood products are to be used), or the blood bank calls the surgeon after the next cooler has been waiting for pickup for a finite period of time. This is typically about 30 minutes. It is extremely helpful if the exact deactivation time is recorded in the electronic medical record. However, this information can be obtained from the blood bank.

Analysis. It’s all over, and now the real fun begins. For most trauma centers, the blood bank maintains extensive data about every aspect of each MTP event. They record what units were released and when, when they were returned, which ones were used, were they at a safe temperature on return or were they wasted, and much, much more! Typically, one of the blood bank supervisors or a pathologist then compiles and reviews this data. What happens next varies by hospital.

Ideally, the information from every MTP activation gets passed on to the trauma program. Presentation at your transfusion committee is fine, but this data is most suitable for presentation at the trauma operations committee. And if significant variances are present (e.g. product ratios are way off) then it should also be discussed at your multidisciplinary trauma PI committee as well.

There are relatively few standard tools out there that allow the display of MTP data in an easily digestible form. Here are some of the key points that must be reviewed by the trauma PI program:

  • Demographics
  • Components used (for ratio analysis)
  • Lab values (INR, TEG, Hgb, etc)
  • Logistics
  • Waste

I am aware of two tools, the Broxton form and an MTP audit tool from the Australian National Blood Authority. The Broxton tool covers all the basics and includes some additional data points that cover activation criteria, TXA administration, and administration of uncrossmatched blood. Click here to check it out. The Australian tool is much more robust with more data points that make a lot of sense. You can download a copy by clicking here.

In the next post, I’ll continue with activation criteria for the MTP.

Crafting And Refining Your Massive Transfusion Protocol – Part 2

My series on the massive transfusion protocol (MTP) continues! Today, I’ll provide some tips on the logistics of your MTP.

MTP logistics include details such as who will be delivering the blood, what actually goes in each cooler, what ratios should be used, limitations imposed by the use of frozen plasma, and documentation. I’ll discuss details about ratios and FFP in the next Trauma MedEd newsletter.

The runners who travel between the blood bank and the patient need to be selected carefully. Blood bank tech? Not ideal because they’ve got more important work to do. ED or OR tech? Maybe, as long as you’ve got a reliable pool. Student or resident? Probably not, because they may not know their way to the blood bank, which is typically placed in the farthest corner of the basement as possible. One of the most creative solutions I’ve seen is the use of a hospital security officer. Think about it. They know the hospital layout cold, including that obscure corner where the blood bank is located. And there are plenty around all the time!

Documentation is critically important, both in the trauma bay and the blood bank. Trauma activations, especially ones requiring MTP, are very fast-moving and complex. Two sets of documentation are crucial: accurate records of blood product administration (on the trauma flow sheet), and documentation of just about everything else (in the blood bank). A specific timestamp on the trauma flow sheet that records the exact time of activation of MTP is a big plus.

What about coolers? I’ve seen everything used from uninsulated plastic buckets, picnic coolers, and pneumatic tube containers to large, self-contained rolling refrigeration units. The choice of container really boils down to cost vs waste. The cheaper the container is, the less insulated it is, the more likely that blood products will be discarded due to high temperature if not transfused promptly. The best blend of cost vs utility seems to be the good, old-fashioned picnic cooler. It’s very portable, reasonably cheap, and can be tested for temperature maintenance. Just be sure to secure a pouch to the outside to keep platelets at room temperature to maintain full functionality.

Here’s a sample MTP cooler that’s ready for use. The platelets are in the pouch on the left. Note the reminder to prompt the team to give TXA if not contraindicated. This is often forgotten in the heat of the trauma activation.

Who actually runs your MTP? In some ways, it should run itself. Coolers get delivered, products get transfused. However, some decision making is needed to decide how long to continue and whether any tweaking of product ratios needs to happen. In the emergency department, the surgeon or emergency physician can do this. But once a trauma patient arrives in the OR, that is no longer the case. The emergency physician was left behind in the ED and the surgeon is up to her elbows in trouble. What about the anesthesiologist? Nope, they are busy keeping the patient safely asleep, regulating rapid infusions, and actually administering the blood.

Most of the time, however, these two physicians actually end up running the MTP while multi-tasking at their other job. Unfortunately, this can lead to errors and delays. One best practice to consider: a highly trained trauma resuscitation nurse or advanced practice provider (APP) can run the MTP from the sidelines. They travel with the patient from ED to OR, managing the MTP the entire time. This offloads responsibility from busier people.

In the next post, I’ll continue with MTP deactivation and analysis.