Category Archives: General

Does The Color Of Your Scrubs Matter?

In most hospitals, it seems that workers in every department wear a different color of scrubs. Traditionally, surgeons have worn scrubs in darker shades of green or blue. This is not always true, as some hospitals have adopted crazy colors in order to reduce theft. Apparently, not too many people are comfortable wearing a pilfered pair of bright pink scrubs in public.

We know that color can have subliminal impacts on people. Blue tends to have a calming effect. This is one of the reasons that police officer uniforms are frequently this color. Green and blue also tend to be associated with medicine. Red, orange,  and yellow are often associated with food. Ever wonder why McDonald’s arches are the color they are?

But what about scrubs? Patients do tend to form associations between a clinician’s dress and their intelligence, empathy, and trustworthiness. Interestingly, scrubs (as opposed to dress clothes) score high for all of these.

But what about the rainbow of colors that scrubs are available in? A recent research letter was submitted to JAMA Surgery by a group at UNC Chapel Hill. They administered an electronic survey over a two-month period to adult patients and visitors at their university hospital.  Their goal was to determine whether scrub color influenced the perception that the wearer was a surgeon, and what character traits were perceived.

This is a copy of the survey, asking for the identification of the surgeon, and the most skilled individual based on scrub color.

The results were quite interesting. This is a chart of trait identification based on color for men. The chart for women was very similar. Note that taller bars are a negative.

Here are the factoids:

  • Half of participants were 30-60 years old, and the remainder were evenly split between younger and older people
  • Green was the color most associated with surgeons and was selected by nearly half of participants. Sex did not seem to matter.
  • Black had the most negative connotation of any color
  • Blue scrubs were associated with the most caring clinicians; however it also implied that they were less knowledgeable, less skilled, and less trustworthy

Bottom line: This is an intriguing little study that shows that unfortunately, looks do matter. Even the colors of our clothes do! The participants associated black with death and said they looked like a mortician’s uniform. So definitely avoid!

The poor perception of clinicians wearing green scrubs is difficult to explain, but consistent. The navy and blue characteristics were generally positive and don’t look appreciably different from each other.

Hospitals pay little attention to the color of the scrubs they purchase. But this choice may have an impact on how the wearer is perceived by patients and families. Perhaps it is time to rethink color in patient-facing clinicians. And avoid black scrubs like the plague!

Reference: Association Between Patient Perception of Surgeons
and Color of Scrub Attire. JAMA Surg, 2023 Jan 11. doi: 10.1001/jamasurg.2022.5837. Epub ahead of print. PMID: 36630142.

Print Friendly, PDF & Email

How To Avoid Missed Injuries

I’ve just spent two days here looking at the phenomenon of “delayed diagnosis” or missed injury. I believe that there are only two fundamental reason why this occurs:

  • Insufficient diagnostic technique – A good physical exam and/or specific diagnostic techniques were not performed. Or rarely, the injury cannot be readily detected by existing techniques and technology. The former is usually the real problem, and may be an issue with either the physical exam completeness and/or technique, or judgment used to obtain the appropriate diagnostic test. Example 1: a penetrating injury to the back is missed because the patient is not logrolled to examine this area. Example 2: a spine fracture is missed in an elderly patient with a fall from standing because the back pain found on physical exam is evaluated only with conventional imaging of the spine, not CT.
  • Failure to recognize the injury – The injury was actually identified on a test, but was not appreciated by the clinician. Example 1: the radiologist may not have appreciated and reported out a subtle anomaly in the cervical spine imaging. Example 2: you fail to check you patient’s lab tests and miss a sudden spike in serum amylase or lipase the day after your patient was kicked in the epigastrium by a horse.

So what can you do to avoid this potential problem? Here are some tips:

  • Admit that it can really happen to you. If the missed injury rate at your center is off the low end of the bell curve (< 5%) then you are either really good or really blind. You’d better take a close look at your performance improvement process, because you may be fooling yourself.
  • Adopt a firm definition of “delayed diagnosis.” Basically, you need a time frame after which a new diagnosis is considered “delayed.” It should be a reasonable time interval after the patient has left the ED. If it’s too short an interval (e.g. once they leave the ED), your number will be unnecessarily high. If it’s too long (days and days later), then significant morbidity may occur that you don’t account for. Most centers have adopted 24, 36, or 48 hours after patient arrival.
  • Implement a tertiary survey process. This is a complete physical re-examination followed by a review of all diagnostic studies (lab and radiology) that have been performed. This exam needs to be dated and timed to ensure that it is performed within the time frame noted above. If a new finding is discovered on the tertiary survey, it is not considered a delayed diagnosis. If found after the survey (or after the pre-determined time interval), it is and must be entered into your performance improvement process.
  • Be paranoid. I hate the phrase, “maintain a high index of suspicion” because it’s meaningless. It’s like those stupid “start seeing motorcycles” bumper stickers. You can’t see what you can’t see. But you can be suspicious all the time, constantly looking for the inevitable clinical surprises of trauma care. 
Print Friendly, PDF & Email

Does The Tertiary Survey Really Work?

Delayed diagnoses / missed injuries are with us to stay. The typical trauma activation is a fast-paced process, with lots of things going on at once. Trauma professionals are very good about doing a thorough exam and selecting pertinent diagnostic tests to seek out the obvious and not so obvious injuries.

But we will always miss a few. The incidence varies from 1% to about 40%, depending on who your read. Most of the time, they are subtle and have little clinical impact. But some are not so subtle, and some of the rare ones can be life-threatening.

The trauma tertiary survey has been around for at least 30 years, and is executed a little differently everywhere you go. But the concept is the same. Do another exam and check all the diagnostic tests after 24 to 48 hours to make sure you are not missing the obvious.

Does it actually work? There have been a few studies over the years that have tried to find the answer. A paper was published that used meta-analysis to figure this out. The authors defined two types of missed injury:

  • Type I – an injury that was missed during the initial evaluation but was detected by the tertiary survey.
  • Type II – an injury missed by both the initial exam and the tertiary survey

Here are the factoids:

  • Only 10 observational studies were identified, and only 3 were suitable for meta-analysis
  • The average Type I missed injury rate was 4.3%. The number tended to be lower in large studies and higher in small studies.
  • Only 1 study looked at the Type II missed injury rate – 1.5%
  • Three studies looked at the change in missed injury rates before and after implementation of a tertiary survey process. Type I increased from 3% to 7%, and Type II decreased from 2.4% to 1.5%, both highly significant.
  • 10% to 30% of missed injuries were significant enough to require operative management

Bottom line: In the complex dance of a trauma activation, injuries will be missed. The good news is that the tertiary survey does work at picking up many, but not all, of the “occult” injuries. And with proper attention to your patient, nearly all will be found by the time of discharge. Develop your process, adopt a form, and crush missed injuries!

Reference: The effect of tertiary surveys on missed injuries in trauma: a systematic review. Scand J Trauma Resusc Emerg Med 20:77, 2012.

Print Friendly, PDF & Email

The Tertiary Survey for Trauma

Major trauma victims are evaluated by a team to rapidly identify life and limb threatening injuries. This is accomplished during the primary and secondary surveys done in the ED. The ATLS course states that it is more important for the team to identify that the patient has a problem (e.g. significant abdominal pain) than the exact diagnosis (spleen laceration). However, once the patient is ready for admission to the trauma center, it is desirable to know all the diagnoses.

This is harder than it sounds. Physical examination tends to direct diagnostic testing, and some patients may not be feeling pain, or be awake enough to complain of it. Injuries that are painful enough may distract the patient’s attention away from other significant injuries. Overall, somewhere between 7-13% of patients have injuries that are missed during the initial evaluation.

A well-designed tertiary survey helps identify these occult injuries before they are truly “missed.” This survey consists of a structured and comprehensive re-examination that takes place within 48-72 hours, and includes a review of every diagnostic study performed. Ideally, it should be carried out by two people: one familiar with the patient, and the other not. It is desirable that the examiners have some experience with trauma (sorry, medical students).

The patients at highest risk for a missed injury are those with severe injuries (ISS>15) and/or impaired mental status (GCS<15). These patients are more likely to be unable to participate in their exam, so a few injuries may still go undetected despite a good exam.

I recommend that any patient who triggers a trauma team activation should receive a tertiary survey. Those who have an ISS>15 should also undergo the survey. Good documentation is essential, so an easy to use form should be used. Click here to get a copy of our original paper form. We have changed over to an electronic record, and have created a dot phrase template, which you can download here.

Next post: Does the tertiary survey actually work?

Print Friendly, PDF & Email

Clinical Manifestations Of Fat Embolism Syndrome

There are three organ systems that are classically involved in FES: pulmonary, CNS, and skin. Manifestations generally begin between 24 and 72 hours after injury. In rare cases, symptoms can begin within 12 hours. In my experience, these tend to be the ones that become the most severe and are frequently life-threatening.

Pulmonary (95% of cases): This is the most common manifestation of FES, and may occur without other signs and symptoms. Nearly all patients develop some degree of hypoxia. Progressive tachypnea and mild tachycardia may provide the first clinical clue if oxygen saturation is not being monitored.

Chest x-ray is usually unremarkable early on. And once the syndrome has developed, it is generally not helpful. CT scan is useful for defining the extent of pulmonary injury, but lags the clinical picture by several days. Findings are non-specific, usually consisting of small, ground-glass opacities in the periphery.

In the example above, the opacities are very small and difficult to see.

But they’re a little more obvious here!

Other CT findings include small pulmonary nodules in the upper lobes or along peripheral pulmonary vessels. These are thought to be areas of obstruction caused by the emboli. Nonspecific pleural effusions may be seen, and bronchial thickening has also been described. Rarely, fat globules may be seen in the lower extremity veins or IVC, and should immediately raise suspicion for developing FES even before symptoms develop.

CNS (60% of cases): If they occur, CNS changes generally crop up after the pulmonary manifestations begin. Generally, they start as mild confusion, but can progress to decreasing level of consciousness and even coma. Focal neurologic deficits are occasionally seen, and seizures can occur.

The actual mechanism behind this appears to be very similar to the skin changes which will be described in the next section. Emboli occur in vessels predominantly in the white matter of the brain. This leads to petechial hemorrhages, which are likely due to the inflammatory mechanisms previously described.

Note the numerous dark petechiae visible in the white matter in this specimen.

Retinal exam can also show evidence of fat embolism. Fat globules may actually be seen in the retinal vessels early.

Note the fat globules at the 9:30 and 2:00 positions to the optic nerve in the image above.

Skin (33% of cases): The most recognizable sign of FES is the petechial skin rash. This rash usually involves the torso, and axillary petechiae are very common. It can spread to involve the head and neck, and occasionally the extremities. Subconjunctival hemorrhages are sometimes seen. The rash tends to be transient and usually lasts only a few days. Here is an example of the classic petechial rash.

Other findings: Fat globules may be found in the urine in patients with FES. However, they are commonly present in patients with long bone fractures, so their presence is not helpful or predictive. Nonspecific findings such as fever, leukocytosis, anemia, and thrombocytosis are also relatively common. In severe cases, cardiac dysfunction, hypotension, and peripheral hypoperfusion can occur. I have personally seen necrosis of fingers and toes from a very severe case.

Unfortunately, the “classic” triad of mental status changes, skin rash, and pulmonary insufficiency are seen in only a small minority of patients. Typically, only one or two signs and symptoms appear at the same time, making diagnosis a bit challenging.

In the next post, making the diagnosis of fat embolism syndrome.

Print Friendly, PDF & Email