Tag Archives: trauma activation

Do I Have To Call My Trauma Team For Incoming Transfers?

I had a great question sent in by a reader last week:

Some trauma centers receive a number of transfers  from referring hospitals. Much of the time, a portion of the workup has already been done by that hospital. If the patient meets one or more of your trauma activation criteria, do you still need to activate your team when they arrive?

And the answer is: sometimes. But probably not that often.

Think about it. The reason you should be activating your team is that you suspect the patient may have an injury that demands rapid diagnosis and treatment. The purpose of any trauma activation is speed. Rapid evaluation. Fast lab results. Quick access to CT scan or OR. If a significant amount of time has already passed (transported to an outside hospital, worked up for an hour or two, then transported to you), then it is less likely that a trauma activation will benefit the patient.

There are four classes of trauma activation criteria. I’ll touch on each one and the need to activate in a delayed fashion if present, in priority order.

  • Physiologic. If there is a significant disturbance in vital signs while in transit to you (hypotension, tachycardia, respiratory problems, coma), then you must activate. Something else is going on that needs to be corrected as soon as the patient arrives. And remember the two mandatory ACS criteria that fall into this category: respiratory compromise/need for an emergent airway, and patients receiving blood to maintain vital signs. But a patient who needed an airway who is already intubated and no longer compromised does not need to be a trauma activation.
  • Anatomic. Most simple anatomic criteria (e.g. long bone or pelvic fractures) do not need a trauma activation unless the patient is beginning to show signs of physiologic compromise. However, anatomic criteria that require rapid treatment or access to the OR (proximal amputations, mangled or pulseless extremities, spinal cord injury) should be activated.
  • Mechanism. Most of the vague mechanistic criteria (falls, pedestrian struck, vehicle intrusion) do not require trauma activation after transfer to you. But once again, if the mechanism suggests a need for further rapid diagnosis or treatment (penetrating injury to abdomen), then activate.
  • Comorbidities. This includes underlying diseases, extremes of age, and pregnancy. In general, these will not require trauma activation after they arrive.

Bottom line: In many cases, the patient transferred in from another hospital will not need to be a trauma activation, especially if they have been reasonably assessed there. The patient should be rapidly eyeballed by your emergency physicians, and if there is any doubt about their condition, activate then.

However, if little workup was done at the outside hospital (my preference), and the injuries are “fresh” (less than a few hours old), then definitely call your team. 

The Trauma Activation Pat-Down?

Yes, this is another one of my pet peeves. During a trauma activation, we all strive to adhere to the Advanced Trauma Life Support protocols. Primary survey, secondary survey, etc. Usually, the primary survey is done well.

But then we get to the secondary survey, and things get sloppy.


The secondary survey is supposed to be a quick yet thorough physical exam, both front and back. But all too often it’s quick, and not so thorough. There is the usual laying on of the hands, but barely. Abdominal palpation is usually done well. But little effort is put into checking stability of the pelvis. The extremities are gently patted down with the hope of finding fractures. Joints are slightly flexed, but not stressed at all.

Is it just a slow degradation of physical exam skills? Is it increasing (and misguided) faith in the utility of the CT scanner? I don’t really know. But it’s real!

Bottom line: Watch yourself and your team as they perform the secondary survey! Your goal is to find all the injuries you can before you go to imaging. This means deep palpation, twisting and trying to bend extremities looking for fractures, stressing joints looking for laxity. And doing a good neuro exam! Don’t let your physical exam skills atrophy! Your patients will thank you.

Trauma Activation Patients Staying Too Long In Your ED?

One of the long-held beliefs in trauma care relates to the so-called “golden hour.” Patients who receive definitive care promptly do better, we are told. In most trauma centers, the bulk of this early care takes place in the emergency department. However, for a variety of reasons, throughput in the ED can be slow. Could extended periods of time spent in the ED after patient arrival have an impact on survival?

Wake Forest looked at their experience with nearly 4,000 trauma activation patients who were not taken to the OR immediately and who stayed in the ED for up to 5 hours. They looked at the impact of ED dwell time on in-hospital mortality, length of stay and ventilator days.

Overall mortality was 7%, and the average time in the ED was 3 hours and 15 minutes. The investigators set a reasonable but arbitrary threshold of 2 hours to try to get trauma activation patients out of the ED. When they looked at their numbers, they found that mortality increased (7.8% vs 4.3%) and that hospital and ICU lengths of stay were longer in the longer ED stay group. Hospital mortality increased with each hour spent in the ED, and 8.3% of patients staying between 4 and 5 hours dying. ED length of stay was an independent predictor for mortality even after correcting for ISS, RTS and age. The most common cause of death was late complications from infection.

Why is this happening? Patients staying longer in the ED between 2 and 5 hours were more badly injured but not more physiologically abnormal. This suggests that diagnostic studies or consultations were being performed. The authors speculated that the knowledge, experience and protocols used in the inpatient trauma unit were not in place in the ED, contributing to this effect.

Bottom line: This is an interesting retrospective study. It reflects the experience of only one hospital and the results could reflect specific issues found only at Wake Forest. However, shorter ED times are generally better for other reasons as well (throughput, patient satisfaction, etc). I would encourage all trauma centers to examine the flow and delivery of care for major trauma patients in the ED and to attempt to streamline those processes so the patients can move on to the inpatient trauma areas or ICU as efficiently as possible.

Reference: Emergency department length of stay is an independent predictor of hospital mortality in trauma activation patients. J Trauma 70(6):1317-1325, 2011.

Best Practice: Use of CT Scan In Trauma Activations – Part 2

In my last post, I described how the unscheduled and random use of CT scan in trauma activations can interfere with normal radiology department workflow, creating access problems for other emergency and elective patients. Today, I’ll detail a project implemented at my hospital to analyze the magnitude of this problem and try to resolve it.

We started with a detailed analysis of how the scanner was being used for trauma activation patients. Regions Hospital has a single-tier trauma activation system, with no mechanism of injury criteria other than penetrating injury to the head, neck, and torso. There are usually about 850 activations per year, and traditionally the CT scanner has been “locked down” when the activation is announced. The CT techs would complete the current study on the table, then hold the scanner open until called or released by the trauma team.

Since we are a predominantly blunt trauma institution, we scan most stable patients. Our average time in the trauma bay is a bit less than 20 minutes. Add this time to the trauma activation prenotification time of up to 10 minutes, and the scanner has the potential to sit idle for up to half an hour. And in some cases when scan is not needed (minor injuries, rapid transport to OR) the techs were not notified and were not aware they could continue scanning their scheduled cases.

A multidisciplinary group was created and started with direct observation of the trauma activation process and a review of chart documentation and radiology logs. On average it was calculated that the scanner was held idle for an average of 17.9 minutes too long. This is more than enough time to complete one, or even two studies!

A new process was implemented that required the trauma team leader to call out to the ED clerk placing orders for the resuscitation 5 minutes before the patient would be ready for scan. I still remember the first time this happened to me. I was so used to just packing up and heading to scan, I got a little irritated when told that I hadn’t made the 5-minute call. But it’s a good feedback loop, and I never forgot again!

We studied our workflow and results over a 9-week period. And here are the factoids:

  • The average CT idle time for trauma activations before the project was 17.9 minutes
  • This decreased to an average idle time of 6.4 minutes during the pilot project
  • Total idle time for all activations was 8.3 hours, but would have been 36 hours under the old system
  • A total of 28.6 hours were freed up, which allowed an additional 114 patients to be scanned while waiting for the trauma activation patients

This was deemed a success, and the 5-minute rule is now part of the routine flow of our trauma activations. We rarely ever have to wait for CT, and if we do it’s usually due to the team leader not thinking ahead.

Bottom line: This illustrates the processes that should be used when a quality problem surfaces in your program:

  • Recognize that there is a problem
  • Convene a small group of experts to consider the nuances
  • Generate objective data that describes the problem in detail
  • Put on your thinking caps to come up with creative solutions
  • Test the solutions until you find one that shows the desired improvement
  • Be prepared to modify your new systems over time to ensure they continue to meet your needs

Best Practice: Use of CT Scan In Trauma Activations – Part 1

Computed tomography is an essential part of the diagnostic workup for many trauma patients. However, it’s a limited resource in most hospitals. Only so many scanners are affordable and available.  Typically, trauma centers have a scanner located in or very near the trauma bay, which makes physical access easy. Others may be located farther away, which can pose logistical and safety issues for critically injured patients.

Even if the CT is close to the ED, availability can be an issue. This availability applies not only to trauma scans, but to others as well. There is an expectation that CT be immediately available when needed for trauma activation patients. However, chances are that the same scanner is also used for high priority scans for services other than trauma, such as stroke evaluation.

Who gets the scanner first? Obviously, many trauma patients need rapid diagnosis for treatment of their serious injuries. But a fresh stroke patient also has a neurologic recovery countdown clock running if they might be eligible for lytic administration.

And don’t forget that trauma and stroke aren’t the only services vying for that scanner. The hospital undoubtedly has a stream of elective scans queued up for other in-house patients. Every urgent or emergent scan needed for trauma sets the elective schedule back another 30 minutes or more.

How does your trauma center manage CT scan usage for trauma? The vast majority essentially lock it down at some fixed point. This is typically either upon trauma activation, or at patient arrival. The former is very common, but also very wasteful because there can be a significant wait for the patient to actually arrive. Then add on the time it takes to complete the trauma bay evaluation. Up to an hour may pass, with no throughput in the CT scanner. This can be a major work flow headache for your radiology department.

Is there another way? My center was one of those that stopped the scanner after the current patient was finished at the time the trauma activation was called. We have two scanners just 30 feet from the trauma bays, so one could continue working while the other was held. However, this cut their throughput by 50% for roughly half an hour. We recognized that this was a creating a problem for the whole hospital, so we worked with the radiology department to come up with a better way.

Tomorrow I’ll detail the new system we implemented, and provide data showing the real impact of this new system on CT scan productivity.