Tag Archives: technology

New Tech: Augmented Reality In The OR?

Virtual reality headsets have been all the rage for some time. They immerse the wearer in a complete virtual world, and are typically used for gaming. Augmented reality, on the other hand, overlays virtual items on the real world so both are visible at the same time. Think the notorious Pokemon Go app:

What if this technology could be used for medical purposes? You could overlay diagnostic or anatomic information on your patient to help guide therapy, surgery, etc.

A group at the University of Alberta in Canada have been playing with this technology. ProjectDR takes any kind of image-related information and projects it directly on a patient.The patient is first scanned using surface markers like they do when making movies:

Obviously, no fancy suit or huge number of markers is needed. Once this is accomplished, the diagnostic information can be projected onto the patient. The patient can move, and the projector will compensate and keep the projection anatomically correct.

Here is a short video that demonstrates the system:

So is this useful? Unfortunately, not yet. It may eventually be good for office-based trauma professionals, but it needs further refinement. This version uses an actual digital projector, which means it will be subject to shadows which will interfere with viewing, especially if a surgeon gets his or her big head in the way.

Here’s how it will really have to work: The system could function quite well in surgical procedures. Imagine the surgeon being able to don a VR headset (lightweight, please!) and see the surgical field with key information overlaid on the display. Or even easier, incorporate it in the DaVinci robotic system display. Add vital signs in the upper corner and details of anatomic structures that have not been surgically exposed yet. It could help show anatomic anomalies in great detail, such as vascular variants. And heck, why not throw in some on-demand magnification as well?

As with most new and exciting tech that hits the general media, a version that is actually usable by clinicians is several years away. But it should be fun when it finally gets here!

Reference: University of Alberta ProjectDR system

Finding Tough-To-See Veins – Revisited

I’m always interested in technology that makes what we do easier, and this item seems to be in the news again. It’s not new technology any more; I first wrote about this way back in 2011. Here’s an objective look at an interesting machine that’s been around for a while. It uses near-infrared light to detect skin temperature changes to allow it to map out veins. It then projects an image of the map in real time onto the skin. In theory, this should make IV starts easier (as long as you can keep your head out of the way of the projector).

One of the first published papers was from Providence, Rhode Island.  It evaluated this device to see if it could simplify IV starts in a tertiary pediatric ED. It was a prospective, randomized sample of 323 children from age 0 to 17 looking at time to IV placement, number of attempts, and pain scores.

Unfortunately, the authors did not find any differences. They found that nearly 80% of IVs were started on the first attempt with or without the VeinViewer, which is less than the literature reported 2-3 attempts. This is most likely due to the level of experience of the nurses in this pediatric ED.

The authors did a planned subgroup analysis of the youngest patients (age 0-2) and found a modest decrease in IV start time (46 seconds) and the nurse’s perception of the child’s pain. Interestingly, the parents did not appreciate a difference in pain between the two groups. This may be due to the VeinViewer’s pretty green display acting as distraction therapy for the child.

The Children’s Hospital of Colorado repeated this study and reported their results earlier this year. And unfortunately they had similar findings. There were no significant differences in success rates using the VeinViewer. Also, nurses did not note any difference in their perceived insertion skills or confidence.

Bottom line: Once again, it seemed like a good idea. But that doesn’t necessarily mean that it is. And we always automatically reach for the new shiny toy. This paper points out the importance of carefully reviewing all new (read: expensive at about $20,000 each) technology before blindly implementing it. In this case, an expensive peice of equipment can’t improve upon what an experienced ED or pediatric nurse can already accomplish.

 

References: 

  1. VeinViewer-assisted intravenous catheter placement in a pediatric emergency department. Acad Emerg Med, 18(9):966-971, 2011.
  2. Utilization of a biomedical device (VeinViewer® ) to assist with peripheral intravenous catheter (PIV) insertion for pediatric nurses. J Spec Pediatr Nurs. 23(2):e12208, 2018.

I have no financial interest in Christie Digital Systems, distributor of the VeinViewer Vision®.

New Technology: The AED Drone

The media tends to give drones a bad name. And certainly, there are careless operators out there who may give drone operators a bad name. But it seems that everyone is getting in the game. Amazon wants to use drones to deliver your orders. Police use them to find missing people, and criminals. Parks use them to protect animals and property.

But how about some medical uses? Sure, they can be used to access austere environments, and potentially to deliver medical supplies. But here is an example of a very creative use. It’s an AED drone!

This drone was designed from the ground up to provide emergency assistance for cardiac arrest. It’s got audio, video, and is a flying defibrillator. Watch this 3 minute video to see how it works and how it was made.

New Technology: The Next Generation Antibiotic Bead?

A number of surgical disciplines use antibiotic beads to deliver antimicrobial drugs to sites that may not have ideal serum penetration. Unfortunately, beads require multiple operations for placement and replacement until the desired effect is achieved.

What if there was a way of delivering antimicrobial therapy directly to the tissues that works for up to two weeks, then dissolves with no trace? A system that does this is being developed by engineers at Tufts University and the University of Illinois at Urbana. They created a small magnesium coil that can be heated using magnetic induction. It is enclosed in a silk pocket and then implanted into the infected tissues. 

The tissues surrounding the device can be heated to different temperatures by placing an induction coil over it and delivering a specific amount of power.

It is also possible to deliver antibiotic doses directly to the tissue by embedding the drug into the silk pocket. As the coil heats up, the antibiotic is released from the fabric. 

The magnesium coil normally dissolves within a few hours when immersed in water, and it takes a bit longer when in direct contact with living tissue. The silk pocket prolongs the time to dissolution, depending on how thick it is. In the rat experiment described in the paper, there was little or no trace after 15 days.

Bottom line: This exciting technology has the potential to simplify the delivery of antimicrobial therapy directly to deeper tissues for extended periods, without the need for a second procedure to retrieve the device. We’ll see how this implant works in studies in larger animals. I’m sure other derivative applications are soon to follow.

Reference: Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings in the National Academy of Sciences. Published online November 24, 2014.

Coming Technology: Stop Abdominal Bleeding With Foam

Foam is used for everything. Firefighting. Impact resistance. Law enforcement. Now a company working with DARPA has developed a foam to slow intra-abdominal bleeding until the patient can get to a definitive care hospital. This concept has been used successfully in pigs and slows uncontrolled liver hemorrhage, increasing survival from 7% to 72%.

It is hoped that the foam can be used in the battlefield, and is simple enough to be administered by a combat medic. A small plastic trochar is introduced into the abdominal cavity and two liquids are injected, like epoxy. They react and fill the abdomen with foam, which slows active bleeding. 

Like so many military innovations, this may ultimately work its way down to urban EMS units for use in penetrating trauma. Keep an eye on this interesting technology.