Category Archives: Device

Fracture Care Of The Future: Traditional Casts vs 3D-Printed Braces

I’ve been fascinated by 3D printing for at least a decade.  Here are some examples from previous posts:

Unfortunately, practical applications have been relatively limited in the field of trauma.  But a lot has been going on in the background. The trauma research group at Erasmus Medical Center in Rotterdam recently published a systematic review on very practical work using 3D printing to produce casts and splints.

Sounds like a very mundane problem to through high tech at, right? But for those of you who look after patients with fractures that have been casted, you know the problems that can arise. Casts can be too tight. They can be ill-fitting. The patient may have soft tissue injuries that require windows cut into the side of the cast. Additional technology such as electrical stimulators may be indicated to enhance healing.

The old-fashioned way of creating a plaster or fiberglass cast seems crude. It is shaped by hand using skill and a fair amount of guesswork. If it’s just a bit too tight, serious complications may occur. If windows are not cut properly, it can destabilize the entire cast.

The Rotterdam trauma research group performed a systematic review of 12 papers that have been published on the topic of 3D-printed casts used in the treatment of forearm fractures. The authors found that most currently use a technique called fused deposition modeling with a polylactic acid substrate.

Instead of relying on subjective skill and luck to shape the brace, the uninjured forearm is scanned with a 3D scanner. The data is fed to a computer aided design (CAD) workstation and a mirror image is created and further refined. Special features such as soft tissue windows or entry points for bone stimulators can be designed into the brace at that time. Because the strength of polycarbonate exceeds that of plaster and fiberglass, it is possible to create a design with a great deal of open area so the underlying skin can be monitored. And allowances can be made for areas with swelling not present on the control extremity.

The data is then fed to a 3D printer to actually create the cast. Here’s an example:

This design is stronger that a traditional cast, is cool and comfortable, and avoids problems with hidden tissue injury or unrecognized foreign objects dropping into the cast creating major problems.

The use of 3D-printed casts and braces is relatively new and is used in only a few centers. For this reason, we do not have enough numbers to show that it is equivalent to traditional casting. Yet. But as the price continues to drop and use becomes more widespread, it’s only a matter of time before you start seeing these items in your own trauma center.

Reference: Personalize d 3D-printed forearm braces as an alternative for a traditional plaster cast or splint; A systematic review. Injury, in press, July 29, 2022. https://doi.org/10.1016/j.injury.2022.07.020

Print Friendly, PDF & Email

REBOA: A Comparison Of The Hardware From Two Companies

I started off the week describing a study using a new version of the REBOA catheter (Resuscitative Endovascular Balloon Occlusion of the Aorta) that was smaller than the more commonly used one. Today I’ll put both side by side and describe the similarities and differences.

First, let’s start with the current market leader, the ER-REBOA catheter by Prytime Medical in Boerne, TX. Here’s a picture provided by the company:

And here’s a photo of the Frontline Medical Technologies COBRA-OS, based in London, Ontario, Canada. This acronym stands for Control of Bleeding, Resuscitation, Arterial Occlusion System. Now, REBOA is used by surgeons as a general descriptor for this type of technology. I assume that Frontline does not include REBOA in the name of this product since Prytime has incorporated it into theirs.

There are a number of similarities, as well as some key differences. Let’s start at the tip and make our way back to the syringe.

Catheter tip: Prytime has a trademarked “P-tip” which has a little extra curl compared to the Frontline’s flexible j-tip. The Prytime version is designed to “help reduce catheter migration and aid in positioning. Although a guidewire can be inserted into either to assist in repositioning, it does not enter the P-tip. And note, neither device requires a wire for insertion.

Arterial line port: This is only found on the Prytime device. This is located just distal to the balloon so arterial pressures can be measured above the catheter after inflation. This port extends through the catheter, terminating in a hub that can be connected to standard pressure transducer equipment. The Frontline device is too small to incorporate this feature.

Balloon: The Prytime balloon is a more standard ovoid shape. The company provides guidelines of 8cc inflation for Zone I and 2cc for Zone III. This can be adjusted based on confirmation of occlusion provided by the arterial pressure wave form. The Frontline device has an “ice cream cone shaped” balloon with the taper proximally and a “safety shoulder” to protect the balloon. The company claims that this design helps reduce the likelihood of rupture. The balloon will accept 13cc at maximum inflation. Since there is no arterial line, alternate means (palpation, ultrasound, or a transducer in the insertion port) must be used to determine degree of occlusion.

Markers: The Prytime device has radio-opaque markers at either end of the balloon, as well as length markers on the proximal portion of the catheter. The Frontline catheter has the same markers around the balloon, but only two large visible marks on the proximal catheter. These are marked for placement in Zone I (48cm) and Zone III (28cm) in average size patients.

Sheath: The Prytime product has a peel-away sheath that is used to cover the P-tip to straighten it. This unit is then inserted into the previously placed access port. Once inserted the sheath is peeled away after the balloon has passed the end of the port. The Frontline device does not have a sheath, but includes a reusable j-tip straightener on the catheter. This straightens the tip as it passes through the port.

Access port: These are included with both products and are inserted using typical Seldinger technique. Both have a side port for fluid infusion. The side port of the Frontline product can be used as an arterial pressure monitor. The port is 7Fr in the Prytime product and 4Fr for Frontline. This smaller size may decrease the incidence of vascular thrombosis or vessel injury requiring repair after removal.

Bottom line: I’ve described two different products that allow trauma professionals to use the REBOA concept. This evolution demonstrates the usual cycle of new product and feature refinement that we have come to expect in medical devices.

Is one “better” than the other? That’s probably not the right question. More likely, it will boil down to which one is right for a particular patient or situation. Only time, and lots of additional research, will tell.

References: 

  • Prytime Medical – www.prytimemedical.com
  • Frontline Medical Technologies, Inc. – www.frontlinemedtech.com

I have no financial interest in either of these companies

Print Friendly, PDF & Email

REBOA Size: Where Did The French System For Catheter Size Come From?

Medicine sure has some weird measurement systems. Besides the more standardized units like microliters, milligrams, and International Units, we’ve got some odd stuff like French (tubes) and gauge (needles). When dealing with tubes and catheters, the size is usually specified in French units.

Since I’m posting several articles on the size of REBOA (resuscitative endovascular balloon occlusion of the aorta) this week, I figured I would re-post this article on where the French sizing system came from.

Where did this crazy French system come from? It was introduced by a Swiss-born gentleman named Joseph-Frédéric-Benoît Charrière. He moved to Paris and was apprenticed to a knife maker. At the age of 17, he founded a  company that manufactured surgical instruments. His company developed and improved a number of surgical instruments, including hypodermic needles and various catheters.

Charrière introduced the system for describing catheters based on their outer diameter (OD).  It was actually named after him, and in France one will occasionally see catheters described in Ch units. Unfortunately, we Americans had a hard time pronouncing his name, and changed it to the French system (Fr).

So what’s the translation? The Ch or Fr number is the outer diameter of a catheter in millimeters multiplied by 3. It is not the outer circumference in millimeters, and the use of pi is not involved. So a big chest tube (36 Fr) has an OD of 12 mm, and a bigger chest tube (40 Fr) has an OD of 13.33 mm.

Print Friendly, PDF & Email

The Shrinking REBOA Catheter

REBOA (resuscitative endovascular balloon occlusion of the aorta) is one of the relatively new toys in our trauma toy chest. Although it’s been used for decades by vascular surgeons, believe it or not it only made the jump into the trauma world less than 10 years ago.

The original catheters used during the early days, and primarily in swine models, required a 15 French sheath for insertion. As might be expected, insertion of these huge sheaths into the common femoral artery can cause significant vascular injury. Equipment manufacturers have been steadily reducing the size of the REBOA catheter, first to 12 Fr and then to the 7 Fr size commonly used today.

The surgery group at the London Health Sciences Center in London, Ontario, Canada performed a pilot study of a new and much smaller sheath and REBOA catheter. It is made by Front Line Medical Technologies, also located in London. This was a proof of concept for the device and was performed in seven neurological death organ donors prior to their donation.

The kit consists of a 4 Fr sheath introducer with a 21 gauge needle and a guidewire, plus the REBOA catheter itself. Here is an image of the catheter:

This catheter includes several innovations not found in current catheters used in the US. I will do a side by side review of these later this week.

Here are the factoids:

  • Seven organ donors were studied after appropriate consent from the hospital IRB, organ procurement agency, organ donor procurement team, and family
  • A single general/vascular surgeon performed all insertions
  • A left sided arterial line using the 4 Fr sheath was inserted for monitoring before the procurement began
  • A right sided 4 Fr sheath was inserted for catheter insertion after the procurement incision was made
  • Average sheath insertion time was 48 seconds, and deployment time for the catheter was an average of 70 seconds (max time was 105 seconds)
  • Occlusion was confirmed by the left femoral arterial pressure monitor and by palpating the aorta below the baloon

Bottom line: This was a very simple study of the feasibility of using a smaller REBOA catheter. It measured both ease of insertion and presence of full occlusion. This is an exciting study, because there is the potential for easier insertion and fewer vascular complications at the insertion site. Obviously, these factors are not yet known, and only further work will make this clear. 

Nonetheless, easier and safer insertion has the potential to increase the use of REBOA. This will allow us to get quicker answers to the nagging questions about whether it is actually a valuable resuscitation tool and help us figure out how and in whom it is best used.

Reference: Size matters: first-in-human study of a novel 4 French REBOA device. Trauma Surgery & Acute Care Open 2021;6:e000617. doi: 10.1136/tsaco-2020-000617

Print Friendly, PDF & Email

How To Make TEG / ROTEM Useful

A lot of papers have been written on the use of thromboelastography in trauma. And pretty much any meeting or course you may attend has at least one talk on it. And I get it. It can be an important tool in treating trauma patients who have some sort of coagulation disturbance. It helps us figure out what specific part of the coagulation process is out of whack and suggests how we can fix it.

But there are a few problems. And the “friction” that those issues cause overall decreases how useful it is. Here’s a partial list of the problems:

  • The equipment costs money, and the disposables that must be used for every patient do, too.
  • Where do you put the machine? Most hospitals can’t put one unit in every possible area it might be used.
  • How to you get the results to a care area if there is no unit there?
  • There is a significant learning curve for interpreting the results
  • How can it be integrated into the massive transfusion protocol?

The main issue is that the current state of TEG and ROTEM are very similar to the state of electrocardiography shortly after it’s discovery. Here’s what you got then:

In order to get the most from an EKG, you need to combine this tracing with that from other leads, do a bunch of measurements, look for abnormal shapes and elevations/depressions, etc.  This is exactly where we are with TEG and ROTEM today. Relatively crude, and it takes a lot of work to use it.

The tracing below shows where we are with EKGs today. A computer program looks at all the tracings, and rapidly applies a complex set of rules to come to a set of diagnoses. Notice in the image below that this reading is “unconfirmed.” But how many times in your career have you seen a cardiologist correct one of these? The machines are actually very good!

Bottom line: The tracing above is where we need to be with TEG and ROTEM. Instead of a clinician staring at a developing tracing and figuring out what products to give, these machines need to be just like an automated EKG machine. Sure, a human can still stare at the trace. But the machine will automatically monitor it, apply rules about what abnormalities are present and what is needed to correct them. Send off your blood specimen, and within minutes instructions like “infuse 2 units of plasma now” or “give 12u cryo now” appear. These may be displayed on a monitor in the treatment area, or be broadcast to the phone or pager of the responsible clinicians.

Current TEG/ROTEM equipment is what I would consider 1st generation. The next generation will reduce or remove much of the “friction” in the current process and allow us to really integrate TEG/ROTEM meaningfully into the massive transfusion protocol for trauma. And for anyone who develops this 2nd generation equipment, don’t forget my royalty checks for this idea! 

In my next post, I’ll review the new EAST guidelines for the use of TEG and ROTEM.

Print Friendly, PDF & Email