Tag Archives: rib fractures

Best Of: Finding Rib Fractures On Chest X-Ray

A lot of people have been viewing and requesting this post recently.

Here’s a neat trick for finding hard to see rib fractures on standard chest xrays.

First, this is not for use with CT scans. Although chest CT is the “gold standard” for finding every possible rib fracture present, it should never be used for this. Rib fractures are generally diagnosed clinically, and they are managed clinically. There is little difference in the management principles of 1 vs 7 rib fractures. Pain management and pulmonary toilet are the mainstays, and having an exact count doesn’t matter. That’s why we don’t get rib detail xrays any more. We really don’t care. Would you deny these treatments in someone with focal chest wall pain and tenderness with no fractures seen on imaging studies? No. It’s still a fracture, even if you can’t see it.

So most rib fractures are identified using plain old chest xray. Sometimes they are obvious, as in the image of a flail chest below.

But sometimes, there are only a few and they are hard to distinguish, especially if the are located laterally. Have a look at this image:

There are rib fractures on the left side side on the posterolateral aspects of the 4th and 5th ribs. Unfortunately, these can get lost with all the other ribs, scapula, lung markings, etc.

Here’s the trick. Our eyes follow arches (think McDonald’s) better than all these crazy lines and curves on the standard chest xray. So tip the xray on its side and make those curves into nice arches, then let your eyes follow them naturally:

Much more obvious! In the old days, we could just manually flip the film to either side. Now you have to use the rotate buttons to properly position the digital image.

Final exam: click here to view a large digital image of a nearly normal chest xray. There is one subtle rib fracture. See if you can pick it out with this trick. You’ll have to save it so you can manipulate it with your own jpg viewer. 

Related posts:

EAST 2018 #6: Predicting Deterioration After Rib Fracture

Yes, more on predictions. We all know that chest trauma is one of the bigger causes of morbidity and mortality in trauma patients. A number of methods have been developed to predict which patients might deteriorate after sustaining chest injury, and where to place them in the hospital on admission. Elderly patients are at particular risk, and determining who to look after more closely, and/or in the intensive care unit, can be very helpful.

The authors of this abstract from West Virginia University took a slightly different approach. Let’s say we have already placed a patient in a ward bed after admission for rib fractures. How can we monitor them and preemptively increase interventions or move to the ICU before they crash and burn?

The WVU group developed a rib fracture guideline nearly 10 years ago, and retrospectively reviewed their experience with 1106 patients over a 6 year period. They measured serial forced vital capacity readings in these patients, and arbitrarily used thresholds of <1, 1-1.5, and >1.5 to predict deterioration.

To boost your memory, look at the following chart. The vital capacity is the maximum amount of volume that can be voluntarily exhaled.

Here are the factoids:

  • Only patients with initial FVC > 1 were enrolled in the study
  • They were then separated into two groups: those whose FVC remained greater than 1 (83%), and those in whom it decreased below 1 (17%)
  • Patients in the low FVC group had significantly more complications like pneumonia, intubation, or unplanned transfer to ICU (15% vs 3%) and a longer length of stay
  • However, the low FVC group also had a higher chest AIS score, higher ISS, were 10 years older, and were twice as likely to have COPD

Bottom line: Seems like a promising study, right? Check out an easy to measure, objective test and step up your level of care if it dips below a certain critical value? But not so fast. The two study groups look like they are very different. No significance testing was shown for these differences, but they certainly look like they should be different. Couldn’t their deterioration have been predicted based on their age and degree of chest injury?

Here are some questions for the authors to consider before their presentation:

  • Please provide the details of your rib fracture pathway
  • Your FVC threshold does not have any units assigned. I am assuming that it is in liters. Please clarify.
  • Why did you describe three cohorts initially, then settle on the lowest (FVC < 1) as your final threshold? Was there a method to this? Why not 1.5? Or 0.75?
  • Did you do any further analysis to try to determine if the differences between the groups were responsible for the differences in complication rates?
  • Big picture question: So why couldn’t you just use a specific age/ISS/comorbidity threshold and predict failure at the time of admission, and forget about measuring several FVC values?

Reference: EAST 2018 Podium paper #9.

EAST 2017 #10: A Simple Way To Predict Complications After Rib Fracture?

Rib fractures are a common injury, and a very common cause of morbidity. Every time I admit an elderly patient with rib fractures, I debate whether they should go to the ICU or a ward bed. Could there be a more objective way of determining the likelihood of complications, aggressiveness of treatment, and admission unit?

A group at West Virginia University implemented a rib fracture pathway in 2009, and have been collecting data on patients ever since. It was based on the measurement of forced vital capacity (FVC) on admission. This is the total amount of air that can be exhaled during a forced breath.

The authors subdivided their patients into two groups based on the total volume exhaled (<1.5L, and >1.5L). They retrospectively reviewed 6 years of data, looking at specific injuries, complications, and unexpected transfer to ICU. They hypothesized that patients in the highest FVC group would have fewer complications.

Here are the factoids:

  • There was a nearly even split in groups, with 678 patients who had FVC > 1.5L, and 682 with FVC < 1.5
  • There were significantly fewer complications and pneumonia, as well as fewer readmissions in the FVC > 1.5 group
  • Higher FVC was not associated with fewer unexpected transfers to ICU
  • Length of stay was half as long (4d vs 8d) in the high FVC group, but no p value was provided
  • The authors conclude that patients with FVC much greater than 1.5 are at lower risk for complications regardless of the number of fractures (???!)
  • They even suggest that patients with FVC > 1.5 could be discharged from the ED rather than be admitted (!)

Bottom line: Well, it started out good! The abstract showed that the high FVC patients had fewer complications and readmissions. And the length of stay was shorter, although significance was not noted. But the jump to correlating complication risk with number of fractures was not addressed in the abstract. And I can’t quite grasp the leap to suggesting possible discharge from the ED. 

FVC may be an inexpensive and simple test to administer in new rib fracture patients. But it’s ability to predict who goes to ICU and who goes home from the ED was not really identified in the study. 

Questions and comments for the authors/presenters:

  1. A minor point, but the upper limit was defined as > 1.5L in some parts of the abstract, and > 1.5L in  others. Small point, but keep it clean. Make sure all the greater than, less than, and equals signs are consistent.
  2. Was the shorter length of stay significantly different between the groups?
  3. Did you do any stratification by age?
  4. How did you make the conclusion that patients could be sent home from the ED?
  5. And did you do any correlations with your FVC data and the number of fractures? It’s not in the abstract.

Click here to go the the EAST 2017 page to see comments on other abstracts.

Related post:

Reference: Is an FVC of 1.5 adequate for predicting respiratory sufficiency in rib fractures? Paper #4, EAST 2017.

Best Of: Finding Rib Fractures On Chest XRay

A lot of people have been viewing and requesting this post recently. 

Here’s a neat trick for finding hard to see rib fractures on standard chest xrays.

First, this is not for use with CT scans. Although chest CT is the “gold standard” for finding every possible rib fracture present, it should never be used for this. Rib fractures are generally diagnosed clinically, and they are managed clinically. There is little difference in the management principles of 1 vs 7 rib fractures. Pain management and pulmonary toilet are the mainstays, and having an exact count doesn’t matter. That’s why we don’t get rib detail xrays any more. We really don’t care. Would you deny these treatments in someone with focal chest wall pain and tenderness with no fractures seen on imaging studies? No. It’s still a fracture, even if you can’t see it.

So most rib fractures are identified using plain old chest xray. Sometimes they are obvious, as in the image of a flail chest below.

But sometimes, there are only a few and they are hard to distinguish, especially if the are located laterally. Have a look at this image:

There are rib fractures on the left side side on the posterolateral aspects of the 4th and 5th ribs. Unfortunately, these can get lost with all the other ribs, scapula, lung markings, etc.

Here’s the trick. Our eyes follow arches (think McDonald’s) better than all these crazy lines and curves on the standard chest xray. So tip the xray on its side and make those curves into nice arches, then let your eyes follow them naturally:

Much more obvious! In the old days, we could just manually flip the film to either side. Now you have to use the rotate buttons to properly position the digital image.

Final exam: click here to view a large digital image of a nearly normal chest xray. There is one subtle rib fracture. See if you can pick it out with this trick. You’ll have to save it so you can manipulate it with your own jpg viewer. 

Related posts:

WTF? A Fractured Rudimentary Rib?

Is it real, or just another one of those crazy things that radiologists like to add to their reports? I recently came across one of these for the first time in over 30 years of practice. What is it? And is it significant in your management of a trauma patient?

A rudimentary rib is simply an extra one (supernumerary). They can be found on vertebrae where ribs are not supposed to be present, typically C7 and L1. The most common supernumerary ribs are found at C7, and are a well documented cause of thoracic outlet syndrome. 

Rudimentary ribs are less commonly found on lumbar vertebrae, and they tend to be longer than the transverse processes. This means that it is possible to break them given moderate to high energy blunt torso trauma. The image below shows a person with 2 rudimentary lumbar ribs on L1.

These are very rare congenital variants. It is more likely that your patient is showing abnormal bone formation after a previous fracture, so question them closely for a history of trauma.

What’s the clinical significance? There’s little chance of hemothorax or pneumothorax. But they cause pain like any other fracture. Just apply your usual routine for rib fracture management: analgesia and pulmonary toilet. Since it takes a relatively large amount of energy to break these short little ribs, be on the lookout for other occult injuries as well.

Bottom line: This isn’t just a weird radiology “red herring.” Rudimentary rib fractures can occur, although a history of previous injury should be ruled out. Manage like any other rib fracture, but beware of potential occult injuries.

Related posts: