Tag Archives: liver

Use Of A Solid Organ Injury Protocol For Pediatrics

Kids are frequent flyers when it comes to abdominal injury, with about 15% of their injuries involving this anatomic area. Solid organ injuries, mainly the liver and spleen, are the most prevalent ones. The American Pediatric Surgical Association (APSA) published a practice guideline way back in 2000 that outlined a consistent way to care for children with solid organ injuries.

Unfortunately, they were very conservative, recommending days of bedrest, extended NPO status, very frequent blood draws, and a lengthy hospital stay. Many hospitals, including mine, developed less conservative management routines, noting that children nearly always tolerate liver and spleen injury better than adults.

The trauma group at Vanderbilt modified the APSA guidelines and, more recently, made additional changes based on a new algorithm released by the organization. This new guideline moved away from organ injury grade-based factors and embraced hemodynamic status as the overall guide to care. The Vanderbilt group performed a retrospective study comparing hospital and ICU length of stay, patient costs, readmission, and death rates using the two guidelines.

Under the old protocol, grade I-III injuries were admitted to a floor bed and higher grades to an ICU at the discretion of the surgeon. The minimum hospital stay was, at minimum, the organ injury grade. Children were kept NPO overnight and placed on bed rest for nearly one day per injury grade.

With the new protocol, children were admitted to the floor if their vital signs normalized after volume resuscitation.  Hematocrit was obtained on admission and possibly again after 6 hours, then only repeated if < 21 or a change in vitals was noted. There were no diet or activity restrictions. Children with abnormal vital signs after volume were admitted to the ICU and kept on bed rest until they normalized. Labs were drawn regularly. Length of stay was based on meeting pain control, diet, and activity goals.

Here are the factoids:

  • There were 176 children (age < 18) enrolled in the old protocol during a four-year period and 170 in the new protocol over 3.5 years
  • Both groups were similar demographically and in injury grade and ISS
  • ICU length of stay was “significantly” shorter under the new protocol (.54 vs .78 days)
  • Hospital length of stay was also “significantly” shorter (2.9 vs 3.5 days)
  • Inflation-adjusted costs were slightly higher under the new protocol ($68,042 vs $65,437) even though the authors claim the opposite in the abstract once injury grade and ISS are factored in
  • Survival was the same at 99.4%
  • Readmission rates were significantly higher under the new protocol (7.1% vs 2.3%)

The authors’ conclusions parroted these results and recommended larger studies to detail any cost advantage and identify the cause for the difference in readmission rates.

Bottom line: This study leaves a lot to be desired. The authors’ definition of “pediatric” is age < 18. As we all know, there is a big difference in “kids” who are pre- vs post-puberty. The good news is that the mean and median ages are about 11 in the study, so there should be fewer older “kids” to cause interference.

The authors reported hazard ratios for the lengths of stay, which were statistically significantly different. However, their clinical significance is in doubt. A difference of 6 ICU hours? Or two-thirds of a hospital day? I’m not impressed. 

Cost differences are basically a wash, and a deep read of the paper shows that many kids did not have an isolated solid organ injury. Non-abdominal injuries could have an Abbreviated Injury Scale score of up to 3. It is easy to imagine that these could impact both length of stay and cost.  

Finally, the readmission rates include many problems related to non-abdominal injuries, including the thorax, soft tissues, and even an epidural hematoma. After excluding these non-abdominal complications, the numbers for both protocols are so low it’s hard to believe that a good significance test can be performed.

The authors’ conclusions are correct: more work needs to be done. This paper doesn’t really teach us much since all the conclusions are extremely weak. A much better, prospective, multicenter trial should be performed. Unfortunately, getting buy-in from multiple centers/surgeons to use the same protocol in children is hard.

But with all that being said, there is no reason you can’t adopt something similar to the new protocol at your center. My own experience has shown that a more aggressive guideline gets kids home sooner and healthier and that there is no difference in readmission rates. I just need a bunch of other surgeons to duplicate these results and write them up!

Reference: A Protocol Driven Approach to Reduce Lengths of Stay for Pediatric Blunt Liver and Spleen Injury Patients. Journal of Trauma and Acute Care Surgery ():10.1097/TA.0000000000004259, January 26, 2024. | DOI: 10.1097/TA.0000000000004259 

The End Of Serial Hemoglobin/Hematocrit In Solid Organ Injury

Here’s the final post on my series covering serial hemoglobin testing in the management of solid organ injury.

We developed our first iteration of a solid organ injury practice guideline at Regions Hospital way back in 2002. It was borne out of the enormous degree of clinical variability I saw among my partners. We based it on what little was publicly available, including an EAST practice guideline.

Recognizing that the EAST guideline couldn’t dictate bedside care, we gathered together to meld it with our own clinical experience. We fashioned our first practice guideline later that year and tested it.  It included instructions for bedrest (only overnight), vital signs monitoring, and lab testing (on admission and once the next day).

That last bit about serial lab tests is an important one. We had seen anecdotal evidence in our patients that it wasn’t very helpful. For example, I had one patient in the ICU whose serial Hgb had just returned normal. However, a minute later they experienced a hard hypotensive episode, and I took him immediately to the OR and took out a ruptured and bleeding spleen.

I’ve written several posts on how quickly Hgb changes after hemorrhage. Unfortunately, this lab test just lags too long to be a reliable indicator of anything. A very recent study has been published by Texas Health Presbyterian in Dallas. The retrospectively reviewed patients with liver or spleen injury over five years. They examined how often serial hemoglobin determinations influenced management during the study period. Possible interventions were none, operation, angioembolization, or blood transfusion.

Here are the factoids:

  • There were 143 patients enrolled, and half had no interventions, a third had interventions within 4 hours, and the remainder (16%) had an intervention after 4 hours
  • In the early intervention group, one-third underwent laparotomy, 42% angiography, and 9% had both; 17% received transfusions based on clinical parameters alone and not lab results
  • Of the 16% that did have a later intervention (23 patients), 12 received a blood transfusion only based on a Hemoglobin value, and all but one had no further interventions. That patient had a laparotomy based on the lab test.
  • All other patients in the late intervention group went to OR or angioembolization based on hemodynamics or a change in physical exam.
  • The number of blood draws was phenomenal, with an average of 19 in the early intervention group, 17 in the delayed intervention group, and 7 in the no-intervention group

The authors concluded that serial hemoglobin measurements were not well-supported by the literature and that the decision for intervention was nearly always driven by hemodynamics or physical exam.

Bottom line: Although this study is small, the results are very clear. As we were taught in our surgical training, hemodynamics and physical exam are vital in managing solid organ injury. Unfortunately, hemoglobin is a lagging indicator, and the repeated discomfort and unnecessary cost overshadow its clinical value. This is most significant when treating pediatric patients.

Try to recall the last time you and your trauma colleagues had a patient whose need for intervention was based on a lab draw. Now take your practice guideline back to the drawing board and eliminate the serial exams!

Click here for an example of a serial Hgb-free solid organ injury practice guideline

Reference: Role of Serial Phlebotomy in the Management of Blunt
Solid Organ Injury in Adults. J Trauma Nurs 30(3), 135–141, 2023.

 

Best Of AAST 2022 #6: The “Missed” Splenic Pseudoaneurysm

Like so many things in trauma, there are two camps when it comes to repeat CT scan after solid organ injury: the believers vs the non-believers. In my experience, a minority of US trauma centers incorporate this repeat CT study in their practice guidelines. 

Yet the question keeps coming up in the literature. Earlier this year, I reviewed a paper from the University of Cincinnati from a group of believers. I was not very kind, and you can read the review here. The biggest problem with most believer papers is that they cite very old literature that overstates the incidence of delayed hemorrhage. They then use this to justify an extra CT scan to find more of these “dangerous” pseudoaneurysms. Unfortunately, those old papers are just not very good and many overstate the problem.

So let’s look at this year’s abstract from the LAC+USC group. They open by stating that the natural history is unclear but that “risk for spontaneous rupture and exsanguination exist.” The authors sought to further define the utility of using a delayed CT angiogram (dCTA) in diagnosing and triggering intervention after high-grade blunt solid organ injury.

They performed a retrospective study of all patients arriving at their Level I center over a nearly five year period with a Grade 3 or higher injury to liver, spleen, or kidney. They excluded the young, patients transferred in, early deaths, and patients who underwent immediate operation on their spleen or kidney. The primary outcome was intervention triggered by the dCTA.

Here are the factoids:

  • A total of 349 patients with 395 high grade solid organ injuries were analyzed (42% liver, 30% spleen, 28% kidney)
  • Median injury grade for each organ was 3
  • Initial management was “typically” nonoperative or angioembolization (liver 83%, spleen 95%, kidney 89%)
  • Delayed CT angiogram was typically performed on day 4 and identified a lesion in 16 spleen, 10 liver, and 6 renal injuries
  • The dCTA prompted an intervention in 12 spleen, 8 liver, and 5 kidney injuries

The authors conclude that delayed CTA identified a significant number of vascular lesions requiring endovascular or surgical intervention. They recommend further examination and consideration of universal screening to avoid missing these pesky pseudoaneurysms.

Bottom line: Once again, we have a paper that conflates finding a pseudoaneurysm with the need to get rid of it. Granted, I was always taught that pseudoaneurysms (in adults) found on initial CT required an intervention. In the old days of “delayed splenic rupture” a pseudoaneurysm was the likely culprit. 

But the majority of centers do not go looking for pseudoaneurysms days later. And there are precious few patients coming back with delayed hemorrhage after discharge. So what gives?

Could it be that there is a difference between a “fresh” pseudoaneurysm and a “delayed” one? Perhaps the fresh ones portend a real risk of bleeding, but delayed ones are just a normal part of the healing process and rarely bleed? We just don’t know for sure.

This paper shows that if you look for a delayed pseudoaneurysm you will find them. And at this center, if you find them you will be compelled to angioembolize or even operate on them. Yet we really don’t know if that is necessary. It certainly adds to length of stay and hospital charges.

My take is that we desperately need a broad tally of patients discharged with a liver or spleen injury who return within a few weeks for bleeding complications. I would exclude kidneys because they act so differently. And I would not look at all returns because most liver injury readmissions are for bile problems. Just focus on readmissions for bleeding. Once we see what the real incidence is, we can decide whether these pseudoaneurysms are a problem significant enough to pursue with delayed scans, etc.

Here are my questions for the authors and presenter:

  1. What is your assessment of the incidence of delayed rupture and exsanguination? Have you read through the old papers in detail to assure yourselves that they are actually correct?
  2. Do you hold patients in the hospital for their delayed CT angiogram? The studies were typically performed on days 3-7. Do you really keep your solid organ injured patients in the hospital that long? At our center, a grade 3 injury could be discharged home in two days!
  3. How do you decide to take a patient to interventional radiology or the OR after the delayed CT? Is it an unwritten rule? It seemed like most, but not all, had some type of intervention. A (very) few had the lesion but nothing was done. Please explain the difference.

This is an interesting paper just because of the intuitive leap it makes from pseudoaneurysm to intervention. I’m anticipating your presentation so I can hear all the details.

Reference: PSEUDOANEURYSMS AFTER HIGH GRADE BLUNT SOLID ORGAN INJURY AND THE UTILITY OF DELAYED CT ANGIOGRAPHY. Plenary paper #34, AAST 2022.

Does Time To Interventional Radiography Make a Difference In Solid Organ Injury?

Solid organ injury is one of the more common manifestations of blunt abdominal trauma. Most trauma centers have some sort of practice guideline for managing these injuries. Frequently, interventional radiology (IR) and angioembolization (AE) are part of this algorithm, especially when active bleeding is noted on CT scan.

So it makes sense that getting to IR in a timely manner would serve to stop the bleeding sooner and help the patient. But in most hospitals, interventional radiology is not in-house 24/7. Calls after hours require mobilization of a call team, which may be costly and take time.

For this reason, it is important to know if rapid access to angioembolization makes sense. Couldn’t the patient just wait until the start of business the next morning when the IR team normally arrives?

The group at the University of Arizona at Tucson tackled this problem. They performed a 4-year retrospective review of the TQIP database. They included all adult patients who underwent AE within four hours of admission. Outcome measures were 24-hour mortality, blood product usage, and in-hospital mortality.

Here are the factoids:

  • Out of over a million records in the database, only 924 met the inclusion criteria
  • Mean time to AE was 2 hours and 22 minutes, with 92% of patients getting this procedure more than an hour after arrival
  • Average 24-hour mortality was 5%. Mortality by hours to AE was as follows:
    • Within 1 hour: 2.6%
    • Within 2 hours: 3.6%
    • Within 3 hours: 4.0%
    • Within 4 hours: 8.8%
  • There was no difference in the use of blood products

The authors concluded that delayed angioembolization for solid organ injury is associated with increased mortality but no increase in blood product usage. They recommend that improving time to AE is a worthy performance improvement project.

Bottom line: This study has the usual limitations of a retrospective database review. But it is really the only way to obtain the range of data needed for the analysis. 

The results seem straightforward: early angioembolization saves lives. What puzzles me is that these patients should be bleeding from their solid organ injury. Yet longer delays did not result in the use of more blood products.

There are two possibilities for this: there are other important factors that were not accounted for, or the sample size was too small to identify a difference. As we know, there are huge variations in how clinicians choose to administer blood products. This could easily account for the apparent similarities between products given at various time intervals to AE.

My advice? Act like your patient is bleeding to death. If the CT scan indicates that they have active extravasation, they actually are. If a parenchymal pseudoaneurysm is present, they are about to. So call in your IR team immediately! Minutes count!

Reference: Angioembolization in intra-abdominal solid organ injury:
Does delay in angioembolization affect outcomes?  J Trauma 89(4):723-729, 2020.

Early Mobilization In Solid Organ Injury

Traditionally, most centers keep their solid organ injury patients in bed and NPO for a period of time. I suspect that they feel that walking may cause the organ to break and require operation. And if they need emergency surgery, shouldn’t they have an empty stomach?

Now let’s think about this. The success rate of nonoperative management for liver and spleen injuries in properly selected patients is somewhere between 93% and 97%. It’s been years since I’ve had a failure while the patient was in my hospital. And since we treat about 200 of these per year, I will be starving and restricting ambulation in a lot of patients just in case that one failure occurs.

The group at LA County – USC recently published a prospective, observational study of their 20-month experience comparing early ambulation vs delayed ambulation after liver, spleen, or kidney injury. They admitted 246 patients with these injuries, but excluded those who couldn’t walk, walked out against medical advice, died, or underwent operative intervention or angiography.

Here are the factoids:

  • There were 36 patients in the early ambulation group (<24 hours) and 43 late ambulators (>24 hours)
  • There were no complications in the early group, and three in the late group (one readmission, two developed pseudoaneurysm that required embolization)

Bottom line: This is a very small study, but it dove-tails with my personal experience. We removed activity restrictions and NPO status from our solid organ protocol two years ago and have not noted any complications while in the hospital.

Reference: Safety of early ambulation following blunt abdominal solid organ injury: A prospective observa-tional study. Am J Surg 214(3):402-406, 2017.