Trauma 20 Years Ago: Early vs Delayed Femur Fixation

Today, we take for granted that fixing fractures early is a good thing. However, this topic was still under debate 20 years ago. Trauma care has always been prioritized, with life-threatening injuries taking precedence. It was very common for major trauma patients to undergo operation for their torso injuries, and then be deemed “too unstable” to undergo repair of their extremities.

Weigelt et al reported decreased pulmonary complications with early fixation in 1989. A study published in July 1990 looked at 121 early vs 218 late femur fixations with respect to more concrete outcomes. The patients were similar with respect to hypotension, transfusions and associated injuries.

They found that delayed fixation increased pulmonary shunt, especially in patients with more severe injuries, and increased the incidence of pneumonia in older patients. It also resulted in more ICU days and a significantly longer hospital stay in the more severely injured group.

This paper was a valuable addition that began to shape our appreciation for the importance of early fixation of most fractures. Major trauma makes patients sick, but they are in the best condition they will be in for weeks at the time they arrive at the hospital. This makes it the ideal time to take care of injuries that may otherwise contribute to morbidity and mortality.

Reference: Fabian et al. Improved outcome with femur fractures: early vs delayed fixation. J Trauma 30(7):792, 1990.

Thoracic Aortic Injury in Very Young Children

Trauma professionals routinely worry about the thoracic aorta when evaluating adults after major blunt trauma. The question is, how much do we have to worry about blunt thoracic aortic injury in children?

Younger children are more elastic, and their organs tend to withstand more punishment than adults. After reviewing the literature, I’ve come to the conclusion that this injury is very rare in children in the single digit age range. It’s difficult to find a good paper that addresses this question. The majority include kids up to age 16 or 18, which really skews the results. These patients are most commonly involved in motor vehicle crashes, although a significant number are also pedestrians struck by cars. 

The National Trauma Data Bank (NTDB) was queried for all children <18 years old sustaining blunt injury with at least 1 diagnosis code. There were nearly 27,000 records matching these criteria. Of these, only 34 had an injury to the thoracic aorta. And in the age range under 10, there were only 2! Both of these children were in very high energy car crashes.

The bottom line: Injury to the thoracic aorta practically never happens in children in the single digit age range. As they get closer to adolescence, they behave more like adults and become more susceptible. The diagnosis should be only be entertained in small children who are involved in very high-energy car crashes. Falls from the usual heights (2-3 stories) are probably not significant enough to cause it. A chest xray may show a full mediastinum, but this will most likely be due to a normal thymus. If investigation is warranted, the standard is to obtain a helical CT of the chest. This study would most likely be obtained anyway to evaluate the torso in a high-energy mechanism. Aortorgraphy is no longer used.

Reference: Trooskin, et al. Risk factors for blunt thoracic injury in children. J Pediatric Surg 40(1):98, 2005. 

The Value of Trauma Center Care

The cost of care in a trauma center is high. When anything is expensive, it is natural to wonder about its cost-effectiveness. A group of biostatisticians recently looked at the treatment costs and cost-effectiveness of treating trauma patients in a trauma center vs an nontrauma hospital. They were very comprehensive in looking at costs, including costs for transportation, treatment at a transferring hospital, rehospitalization for acute care if needed, inpatient rehab, stays in longterm care or skilled nursing care facilities, outpatient care and informal care given by family members.

Treatment at a trauma center saved 3.4 lives per 100 patients treated. The overall added cost for treatment at a trauma center was about $36,000 per life year gained. However, in order to gauge cost-effectiveness we need to know what a year of life is worth. As you can imagine, this is tough to figure out. A number of researchers have looked at this, and it typically ranges from $50,000 to $200,000 per year. Thus, trauma center care is overall cost-effective.

The data was more closely analyzed, and it appears that the cost-effectiveness is greater for patients with more severe injuries. Unfortunately, cost-effectiveness is not as clear for patients who are 55 years or older.

The bottom line: Trauma is a leading cause of death in this country. The concept of treating more severely injured patients at trauma centers is both effective and cost-effective. Trauma systems need to be fine-tuned so that they get the right patient to the right hospital and so care for elderly patients continue to improve.

Reference: Nathens et al. The Value of Trauma Care. J Trauma 69(1):1-10, 2010.

How Accurate is EMS at Estimating Blood Loss in the Field?

EMS providers are the trauma professional’s eyes and ears when providing transportation from the scene of an accident. We rely on their assessment of the mechanism of injury and the amount of blood lost. We tend to believe in the accuracy of those assessments.

A study was carried out that tested EMS personnel on their ability to accurately estimate specific amounts of blood that were left at a simulated accident scene. The blood volumes tested were 500cc, 1000cc, 1500cc and 2100cc. A total of 92 professionals participated, and there was an even split into basic EMTs (34%), intermediate/critical care EMTs (33%) and paramedics (31%). Experience levels were as follows: 0-5 years 43%, 6-10 years 30%, >10 years 31%.

The results were as follows:

  • 87% underestimated the quantity of blood
  • 9% overestimated
  • 4% guessed the exact amount
  • Experience or credentialing level did not matter

Only 8% of the subjects were within 20% of the actual volume, and an additional 19% were within 50%. In general, most medics underestimated the amount of blood lost, and their guesses were worse with higher volumes. The median guess for the 2100cc loss group was only 700cc!

EMS Blood Loss Estimates

The bottom line: Visual estimates of blood loss are extremely inaccurate, and are most likely  underestimates. Physicians in the ED should rely on exam and physiology to help determine the amount of blood loss. For safe measure, multiply the reported blood loss of the EMT or paramedic by 2 or 3 to get a realistic number.

Reference: Patton et al. Accuracy of Estimation of External Blood Loss by EMS Personnel. J Trauma 50(5), 914, 2001.

Home of the Trauma Professional's Blog

Do you want to get a daily email every time there’s a new post? See what I’m up to.

Click here to get details and subscribe!

[accua-form fid=”1″]

[mc4wp_form id=”2023″]