All posts by The Trauma Pro

Time Is Spine: Spinal Decompression For Central Cord Syndrome

Over the recent decades, there has been a huge push toward “evidence-based” medicine. Unfortunately, the available amount of high-quality literature is relatively low. And the field of neurotrauma is even less-represented than most.

Debates have raged over the years regarding the proper timing of surgical spine decompression in patients with spinal cord injuries. Many proponents of early decompression (within 24 hours) believe this may limit secondary injury to the cord. But there are also others who don’t buy into this idea.

Central cord syndrome is a special case of spinal cord injury. It is a partial injury, usually in the cervical spine. It causes varying degrees of pain, paresthesia, and paresis and usually affects the upper extremities more than the lowers.

Many neurosurgeons choose a “wait and see” attitude with central cord syndrome patients. However, a group of neurosurgeons spanning trauma hospitals in Canada, Philadelphia, and Baltimore published an interesting paper last year. They performed a propensity score-matched cohort study, comparing functional recovery in patients undergoing early vs. late decompression after sustaining a central cord injury.

They specifically selected patients from three national spinal cord injury databases who had a full ASIA impairment scale examination performed within 14 days of injury. Patients had to have AIS grade C or D, meaning that some motor function was still present, and had to show a major difference between upper and lower extremity motor strength.

Here are the factoids:

  • Of a combined dataset of 1692 patients, 300 met baseline criteria. However, only 186 were eligible for propensity score matching, with half in each study group (early vs. late decompression).
  • Follow-up data was only available in 148 patients, which was right at the limit of the authors’ power calculation
  • Early surgery was significantly associated with improved upper limb motor function recovery but not the lower extremity. Overall motor score was not improved.
  • There was no functional improvement after late surgery
  • Patients with higher ASIA score (D) showed no improvement, regardless of surgical timing
  • Patients with AIS C lesions had significant recovery of their motor score in both upper and lower extremities but not their FIM motor score
  • A higher percentage of early-surgery patients achieved complete independence, especially those involving upper extremity function. However, this did not reach statistical significance.

Bottom line: Spine decompression timing remains very controversial, with every neurosurgeon having their own opinion. Unfortunately, this study was borderline underpowered, which may have weakened its results. 

Several important trends were noted, however. First, early surgery did have an impact on functional recovery, especially in the upper extremities. This is especially important because use of the hands is critical to functional independence.  But the most exciting result was the trend toward a higher percentage of patients achieving complete independence after early surgery. To be clear, this was just a trend and did not achieve statistical significance.

It’s time to start working with our neurosurgery colleagues and nudging them toward considering earlier surgery on this subset of spinal cord injury patients. It will take time and education, but these patients will actually be able to thank us, especially if they are actually able to shake our hands!

Reference: Early vs Late Surgical Decompression for Central Cord Syndrome. JAMA Surg. 2022;157(11):1024-1032. doi:10.1001/jamasurg.2022.4454

The End Of Serial Hemoglobin/Hematocrit In Solid Organ Injury

Here’s the final post on my series covering serial hemoglobin testing in the management of solid organ injury.

We developed our first iteration of a solid organ injury practice guideline at Regions Hospital way back in 2002. It was borne out of the enormous degree of clinical variability I saw among my partners. We based it on what little was publicly available, including an EAST practice guideline.

Recognizing that the EAST guideline couldn’t dictate bedside care, we gathered together to meld it with our own clinical experience. We fashioned our first practice guideline later that year and tested it.  It included instructions for bedrest (only overnight), vital signs monitoring, and lab testing (on admission and once the next day).

That last bit about serial lab tests is an important one. We had seen anecdotal evidence in our patients that it wasn’t very helpful. For example, I had one patient in the ICU whose serial Hgb had just returned normal. However, a minute later they experienced a hard hypotensive episode, and I took him immediately to the OR and took out a ruptured and bleeding spleen.

I’ve written several posts on how quickly Hgb changes after hemorrhage. Unfortunately, this lab test just lags too long to be a reliable indicator of anything. A very recent study has been published by Texas Health Presbyterian in Dallas. The retrospectively reviewed patients with liver or spleen injury over five years. They examined how often serial hemoglobin determinations influenced management during the study period. Possible interventions were none, operation, angioembolization, or blood transfusion.

Here are the factoids:

  • There were 143 patients enrolled, and half had no interventions, a third had interventions within 4 hours, and the remainder (16%) had an intervention after 4 hours
  • In the early intervention group, one-third underwent laparotomy, 42% angiography, and 9% had both; 17% received transfusions based on clinical parameters alone and not lab results
  • Of the 16% that did have a later intervention (23 patients), 12 received a blood transfusion only based on a Hemoglobin value, and all but one had no further interventions. That patient had a laparotomy based on the lab test.
  • All other patients in the late intervention group went to OR or angioembolization based on hemodynamics or a change in physical exam.
  • The number of blood draws was phenomenal, with an average of 19 in the early intervention group, 17 in the delayed intervention group, and 7 in the no-intervention group

The authors concluded that serial hemoglobin measurements were not well-supported by the literature and that the decision for intervention was nearly always driven by hemodynamics or physical exam.

Bottom line: Although this study is small, the results are very clear. As we were taught in our surgical training, hemodynamics and physical exam are vital in managing solid organ injury. Unfortunately, hemoglobin is a lagging indicator, and the repeated discomfort and unnecessary cost overshadow its clinical value. This is most significant when treating pediatric patients.

Try to recall the last time you and your trauma colleagues had a patient whose need for intervention was based on a lab draw. Now take your practice guideline back to the drawing board and eliminate the serial exams!

Click here for an example of a serial Hgb-free solid organ injury practice guideline

Reference: Role of Serial Phlebotomy in the Management of Blunt
Solid Organ Injury in Adults. J Trauma Nurs 30(3), 135–141, 2023.

 

Serial Hemoglobin / Hematocrit – Huh? Part 2

In my last post, I waxed theoretical. I discussed the potential reasons for measuring serial hemoglobin or hematocrit levels, the limitations due to the rate of change of the values, and conjectured about how often they really should be drawn.

And now, how about something more practical? How about an some actual research? One of the more common situations for ordering serial hemoglobin draws occurs in managing solid organ injury. The vast majority of the practice guidelines I’ve seen call for repeating blood draws about every six hours. The trauma group at the University of Florida in Jacksonville decided to review their experience in patients with liver and spleen injuries. Their hypothesis was that hemodynamic changes would more likely change management than would lab value changes.

They performed a retrospective review of their experience with these patients over a one year period. Patients with higher grade solid organ injury (Grades III, IV, V), either isolated or in combination with other trauma, were included. Patients on anticoagulants or anti-platelet agents, as well as those who were hemodynamically unstable and were immediately operated on, were excluded.

Here are the factoids:

  • A total of 138 patients were included, and were separated into a group who required an urgent or unplanned intervention (35), and a group who did not (103)
  • The intervention group had a higher ISS (27 vs 22), and their solid organ injury was about 1.5 grades higher
  • Initial Hgb levels were the same for the two groups (13 for intervention group vs 12)
  • The number of blood draws was the same for the two groups (10 vs 9), as was the mean decrease in Hgb (3.7 vs 3.5 gm/dl)
  • Only the grade of spleen laceration predicted the need for an urgent procedure, not the decrease in Hgb

Bottom line: This is an elegant little study that examined the utility of serial hemoglobin draws on determining more aggressive interventions in solid organ injury patients. First, recognize that this is a single-institution, retrospective study. This just makes it a bit harder to get good results. But the authors took the time to do a power analysis, to ensure enough patients were enrolled so they could detect a 20% difference in their outcomes (intervention vs no intervention). 

Basically, they found that everyone’s Hgb started out about the same and drifted downwards to the same degree. But the group that required intervention was defined by the severity of the solid organ injury, not by any change in Hgb.

I’ve been preaching this concept for more than 20 years. I remember hovering over a patient with a high-grade spleen injury in whom I had just sent off the requisite q6 hour Hgb as he became hemodynamically unstable. Once I finished the laparotomy, I had a chance to pull up that result: 11gm/dl! 

Humans bleed whole blood. It takes a finite amount of time to pull fluid out of the interstitium to “refill the tank” and dilute out the Hgb value. For this reason, hemodynamics will always trump hemoglobin levels for making decisions regarding further intervention. So why get them?

Have a look at the Regions Hospital solid organ injury protocol using the link below. It has not included serial hemoglobin levels for 18 years, which was when it was written. Take care to look at the little NO box on the left side of the page.

I’d love to hear from any of you who have also abandoned this little remnant of the past. Unfortunately, I think you are in the minority!

Reference: Serial hemoglobin monitoring in adult patients with blunt solid organ injury: less is more. J Trauma Acute Care Open 5:3000446, 2020.

Serial Hemoglobin / Hematocrit – Huh? Part 1

The serial hemoglobin (Hgb) determination. We’ve all done them. Not only trauma professionals, but other in-hospital clinical services as well. But my considered opinion is that they are not of much use. They inflict pain. They wake patients up at inconvenient hours. And they are difficult to interpret. So why do them?

I’m reposting this mini-series on serial hemoglobin draws in light of a new paper that was published in the Journal of Trauma Nursing. It continues next week with Part 2, and then a summary of the new paper.

First, what’s the purpose? Are you looking for trends, or for absolute values? In trauma, the most common reason to order is “to monitor for bleeding from that spleen laceration” or some other organ or fracture complex. But is there some absolute number that should trigger an alarm? If so, what is it? The short answer is, there is no such number. Patients start out at a wide range of baseline values, so it’s impossible to know how much blood they’ve lost using an absolute value. And we don’t use a hemoglobin or hematocrit as a failure criterion for solid organ injury anymore, anyway.

What about trends, then? First, you have to understand the usual equilibration curve of Hgb/Hct after acute blood loss. It’s a hyperbolic curve that reaches equilibrium after about 3 days. So even if your patient bled significantly and stopped immediately, their Hgb will drop for the next 72 hours anyway. If you really want to confuse yourself, give a few liters of crystalloid on top of it all. The equilibration curve will become completely uninterpretable!

And how often should these labs be drawn? Every 6 hours (common)? Every 4 hours (still common)? Every 2 hours (extreme)? Draw them frequently enough, and you can guarantee eventual anemia.

Bottom line: Serial hemoglobin/hematocrit determinations are nearly worthless. They cost a lot of money, they disrupt needed rest, and no one really knows what they mean. For that reason, my center does not even make them a part of our solid organ injury protocol. If bleeding is ongoing and significant, we will finding it by looking at vital signs and good old physical exam first. But if you must, be sure to explicitly state what you will do differently at a certain value or trend line. If you can’t do this and stick to it, then you shouldn’t be ordering these tests in the first place!

In my next post, I’ll discuss a paper that objectively shows the (lack of) utility of this testing method.

Creating A Virtual RTTDC Course

The Rural Trauma Team Development Course (RTTDC) was introduced by the American College of Surgeons (ACS) to improve the care of trauma patients in rural communities. It is a staple of education for Level III and IV trauma centers in rural areas. Like everything else, most courses were shut down by the COVID-19 pandemic.

Conemaugh Memorial Medical Center in Johnstown, Pennsylvania, polled its local referral hospitals and discovered that the majority felt a significant need for continuing, in-person education that was not being met. This need, coupled with the observation of an increased number of opportunities for improvement in patients transferred to them, led them to consider adapting the RTTDC to a virtual format so the course could continue.

Since RTTDC is a product of the ACS, it is no simple matter to change it in any way. The trauma program worked with the ACS to get permission to make changes to the course.  Speakers with specialization in their topic recorded all of the lectures. They contained embedded questions to be answered using the polling feature of the Zoom software used.

The most challenging adaptation was simulation development for the hands-on portions of the course. These were painstakingly recorded on video in a simulation laboratory and incorporated into the lecture material.

Preregistration was brisk, and 41 participants signed up for the course. The format consisted of a lecture with live discussion and participant questions, followed by a simulation video moderated by the course director. All questions were answered before moving on to the next module.

Several positive changes were noted in the months following the course:

  • Many facilities purchased additional equipment, such as traction splints, pelvic binders, and blood warmers.
  • Some hospitals began acquiring tranexamic acid and prothrombin concentrate.
  • One facility modified its radiographic imaging policy.
  • All hospitals tightened their performance improvement processes and began to identify more opportunities for improvement.

Of course, some downsides were also identified:

  • Production of the course was very intensive and administratively challenging.
  • There was the possibility of teleconferencing hardware/software failure.
  • It was difficult for the presenters to “read the audience” because of the Zoom headshot.
  • Truly interactive discussions were difficult to achieve.

Bottom line: This is a creative example of a rural trauma center identifying regional needs and developing an innovative solution despite the pandemic. Despite the amount of work needed to pull it off, the results were very positive. Although the course should ideally be produced in person, this may not be feasible in some very remote areas. 

Hopefully, the ACS will be able to recognize this work and the need for this format. It should create a virtual version to help spread the word to all rural trauma centers.

Reference: Virtual Rural Trauma Team Development Course: Trying To Zoom In On A Solution. J Trauma Nursing 20(3):186-190, 2023.