Tag Archives: Trauma

Incidental Appendectomy During Trauma Laparotomy?

The debate over incidental appendectomy has waxed and waned over the years. And for the most part, it has nearly permanently waned in general surgical cases for now. But every once in a while, I am asked about incidental appendectomy during trauma laparotomy. Is it a good idea? What reasons could there possibly be for doing it?

In the old days, we would frequently do an incidental appendectomy because… well, just because we were there. The surgeon was in the midst of a general surgical case, typically an open one, and this normal little appendix was just staring us in the face. The justification was usually, “we’ll save him another operation in the future in case he develops acute appendicitis.”

Legitimate reason? It took many years for the literature to develop, but it finally did. Here were the reasons we figured out not to do it:

  • Despite how innocuous a procedure it seems to be, there is a measurable uptick in complication rates. This is true in the usual clean contaminated general surgery cases. Some papers also noted an increased mortality when the appendectomy was added to a cholecystectomy case. In a trauma procedure with bowel injury and contamination, it’s a bit harder to see the correlation. But any time we cut or staple something out, there is always the possibility that it might break down.
  • Cost increases in laparoscopic cases if additional ports and/or equipment is needed for the appendectomy. This doesn’t really apply to major trauma cases, since we better not be doing them laparoscopically!
  • The appendix is not the useless vestigial structure we originally thought. There is evidence that it is a repository for the gut microbiome, which can help repopulate the colon with bacteria after a serious insult like prolonged antibiotic administration. Unnecessary removal may ultimately interfere with gut health and disease.

Can acute appendicitis develop after trauma laparotomy? Sure, at any time. Thankfully, it’s not very common. The presenting complaints are the same as we learned in the doctor books. However, the location of the pain and tenderness may not be in the classic location depending on the post-trauma anatomy and presence of adhesions.

Bottom line: Incidental appendectomy is no longer indicated for just about anything, including trauma laparotomy. If one of your patients presents with abdominal pain at any time, both post-traumatic and other causes must be considered. CT has become the standard for appendicitis workup, and is extremely helpful in sorting out causes in the post-op trauma patient. Use it, and if it is one of the rare cases where appendicitis is actually present, then proceed with the usual and appropriate operative on nonoperative management.

References:

  • Incidental appendicectomy with laparotomy for trauma. Br J Surg 62(6):487-9, 1975
  • Appendicitis following blunt abdominal trauma. Am J Emerg Med 35(9):1386.e5-1386, 2017.
  • Systematic review of blunt abdominal trauma as a cause of acute appendicitis. Ann R Coll Surg Engl 92(6):477-82, 2010.

Pulmonary Embolism and DVT in Trauma

We have long assumed that pulmonary emboli start as clots in the deep veins of the legs (or pelvis), then break off and float into the branches of the pulmonary artery in the lungs. A huge industry has developed around how best to deal with or prevent this problem, including mechanical devices (sequential compression devices), chemical prophylaxis (heparin products), and physical devices (IVC filters).

The really interesting thing is that less than half of patients who are diagnosed with a pulmonary embolism have identifiable clots in their leg veins. In one study, 26 of 200 patients developed DVT and 4 had a PE. However, none of the DVT patients developed an embolism, and none of the embolism patients had a DVT! How can this kind of disparity be explained?

Researchers at the Massachusetts General Hospital retrospectively looked at the correlation between DVT and PE in trauma patients over a 3 year period. DVT was screened for on a weekly basis by duplex venous ultrsonagraphy. PE was diagnoses exclusively using CT scan of the chest, but also included the pelvic and leg veins to look for a source. A total of 247 patients underwent the CT study for PE and were included in the study.

Forty six patients had PE (39% central, 61% peripheral pulmonary arterial branches) and 18 had DVT (16 seen on the PE CT and 2 found by duplex). Of the 46 patients with PE, only 15% had DVT. All patient groups were similar with respect to injuries, injury severity, sex, anticoagulation and lengths of stay. Interestingly, 71% of PE patients with DVT had a central PE, but only 33% of patients without DVT had a central PE.

The authors propose 4 possible explanations for their findings:

  1. The diagnostics tools for detecting DVT are not very good. FALSE: CT evaluation is probably the “gold standard”, since venography has long since been abandoned
  2. Many clots originate in the upper extremities. FALSE: most centers do not detect many DVTs in the arms
  3. Leg clots do not break off to throw a PE, they dislodge cleanly and completely. FALSE: cadaver studies have not show this to be true
  4. Some clots may form on their own in the pulmonary artery due to endothelial inflammation or other unknown mechanisms. POSSIBLE

An invited critique scrutinizes the study’s use of diagnostics and the lack of hard evidence of clot formation in the lungs.

The bottom line: this is a very intriguing study that questions our assumptions about deep venous thrombosis and pulmonary embolism. More work will be done on this question, and I think the result will be a radical change in our use of anticoagulation and IVC filters over the next 3-5 years.

Velmahos, Spaniolas, Tabbara et al. Arch Surg. 2009; 144(10):928-932.

What You Need To Know About Falls From a Height

 Falls from a height can be either accidental or intentional (suicide attempt). There are several prognostic factors for survival that have been identified:

  • Height
  • Age
  • Type of surface
  • Body part that touches the ground first

Two other factors are important, but do not have a significant effect on mortality:

  • Circumstances of the fall (suicide, accident, escape)
  • Initial impact with an object before impacting the ground

Height. Overall, about half of victims die at the scene, and a total of 70% die before they reach the hospital. The median height leading to death is about 49 feet, or about 4 to 5 storeys. 100% of victims die after falling 85 feet, or about 8 storeys.

Age. Mortality increases with age due to pre-existing medical conditions and decreased physiologic reserve.

Type of surface. The type of surface struck (i.e. grass, water, construction debris) can also have an effect on secondary injuries and survival. Mortality after striking a hard surface is nearly double that of hitting a soft one (39% vs 22%)

Body part touching the ground first. The highest mortality is seen when the victim lands in a prone position (57%). Striking head first has the next highest mortality at 44%. The best striking position is feet first, with a mortality of 6%.

Circumstances of the fall. Suicide attempts have the highest death rate at 46%. This may be attributable to pre-planning, and the increased likelihood that the fall may lead to additional trauma mechanisms (struck by car after jumping from land bridge, drowning after jumping from bridge over water). Accidental falls have a lower 17% mortality.

Initial impact before final impact. Striking wires or scaffolding before the final impact is protective, decreasing the death rate from 37% to 15%.

It is important for the trauma professional to obtain as much information from bystanders or EMS as possible about the fall details. This will ultimately enable to trauma physician to pursue appropriate diagnostic techniques to pinpoint specific injuries associated with various types of falls.

Reference:

Crit Care Med 33(6): 1239-1242, 2005.