Tag Archives: EMS

Trauma Survival and Air vs Ground Transport

Wartime experience has shown that rapid transport from the battlefield scene of injury to definitive care dramatically improves survival. This has been translated into civilian trauma care by making helicopter transport to a trauma center more widely available. But this resource is still somewhat limited, and very expensive compared to ground EMS transport. Is this expense warranted, or in other words, does it improve survival?

Many have tried to answer this question. Several of these studies did show improved survival with air transport, but most had significant flaws that made their conclusions hard to interpret. The current issue of JAMA has published an article from MIEMSS and Johns Hopkins that tries to do it right.

The authors used the National Trauma Data Bank (1.8M records) and whittled it down to 223K by using pertinent exclusion criteria. About 25% were transported by air and 72% were taken to Level I centers (vs Level II). A sophisticated regression model was used to adjust for missing data and clustering by trauma centers.

They found that there is roughly a 1.5% survival advantage in taking patients to trauma centers by air. About 65 patients need to be transported to a Level I center, or 69 patients to a Level II center, to save a life. There are some issues with the statistics, primarily due to the nature of the NTDB data, but overall the paper is nicely done.

Bottom line: It looks like helicopter transport of seriously injured trauma patients conveys a very small survival advantage. However, this does not mean that everybody now needs to be flown in. This is not an ideal world, and not everybody is in an area that can provide such transport. Furthermore, in many areas ground EMS is still faster than air. And finally, air transport is much more expensive than the incremental survival increase may be worth. We will have to come to grips as a society to figure out what we can really afford.

Reference: Association between helicopter vs ground emergency medical services and survival for adults with major trauma. JAMA 307(15):1602-1610, April 18, 2012.

Prehospital To Trauma Team Handoff: A Solution

I’ve written about handoffs between EMS and the trauma team over the past two days. It’s a problem at many hospitals. So what to do?

Let’s learn from our experience in the OR. Best practice in the operating room mandates a specific time out process that involves everyone in the OR. Each participant in the operation has to stop, identify the patient, state what the proposed procedure and location is, verify that the site is marked properly, and that they have carried out their own specific responsibilities (e.g. infused the antibiotic).

Some trauma centers have initiated a similar process for their trauma team as well. Here’s how it works:

  • The patient is rolled into the resuscitation room by EMS personnel, but remains on the stretcher.
  • Any urgent cares continue, such as ventilation.
  • The trauma team leader is identified and the EMS lead gives a brief report while everyone in the room listens. The report consists of only mechanism, all identified injuries, vital signs (including pupils and GCS), any treatments provided. This should take no more than 30 seconds.
  • An opportunity for questions to be asked and answered is presented
  • The patient is moved onto the hospital bed and evaluation and treatment proceed as usual.
  • EMS personnel provide any additional information to the scribe, and may be available to answer any additional questions for a brief period of time.

Bottom line: This is an excellent way to improve the relationship between prehospital and trauma team while improving patient care. It should help increase the amount of clinically relevant information exchanged between care providers. Obviously, there will be certain cases where such a clean process is not possible (e.g. CPR in progress). I recommend that all trauma programs consider implementing this “Trauma Activation Time Out For EMS” concept.


Related posts:

EMS Handoff: Comments

I received quite a bit of feedback from yesterday’s column. Obviously this topic strikes a chord with my readers. Here was one well thought out comment from Tim Kaye in California:

I have worked for 15 years as a paramedic in a very busy EMS system in Northern California. When I was new, I used to fight to make myself heard in the trauma room, only adding to the din and chaos, which was usually – and rightly so – squelched by a decisive bark from the trauma team leader for quiet as they assesed the critical patient. What I came to realize was that if I wanted to benifit my patient, I needed to re-invent how I was taught to give my reports. Instead of trying to include everything in a minutes-long speech, I would instead follow this pattern:

1) Ask as I was walking in who I would give report to, thereby establishing clear communication and not just shouting to no one in particular.

2) A very brief, one sentence explination of MOI, and I forced myself to hold fast to the one sentence rule.

3) Critical findings/life-threats were reported next, followed by any interventions. This gave the trauma team leader an idea of where to focus their exam for similar life-threats.

4) I would give only selected vital signs in my rapid report. These included anything aberant or concering, followed by heart rate, respiratory rate and end-tidal CO2 on all patients.

5) I would conclude by asking the trauma team leader specifically if they had any immediate questions.

Because I structure and practice this method, my reports typically last about 20-30 seconds. Realizing that there are major gaps in the initial report, I then go and speak directly to the scribe and fill in those gaps with such information as further description of MOI, a complete set of vital signs and trends, blood glucose, IV sites, etc.

This method allows for rapidly communicating vital information quickly, and detailed information to the appropriate staff member at the appropriate time.

To tie up any loose ends, after I completed my charting, I ALWAYS stop by the trauma bay and check one last time with both the trauma team leader and the scribe and ask if they have any more questions. As I made this my practice, ER attendings, trauma surgeons and nurses all came to expect this final check-in to clear up any last questions. This worked in a most excellent fashion to provide continuity of care, to develop relationships with all of the staff at our two Level-1 and one Level-2 centers, and for personal education as I checked in to what the diagnosis and course of treatment was for the patient.

I would argue that the handoff is really a two-way process. Tim has found a way to do the right thing in an environment where the other half of the team is too busy / not listening / not aware.

Tomorrow I’ll share what I think is the best approach to this process. Hint: it involves active participation by both sets of trauma professionals.

Related posts:

The Handoff: Opportunity for Improvement

Handoffs occur in trauma care all the time. EMS hands the patient off to the trauma team. ED physicians hand off to each other at end of shift. They also hand off patients to the inpatient trauma service. Residents on the trauma service hand off to other residents at the end of their call shift. Attending surgeons hand off to each other as they change service or a call night ends. The same process also occurs with many of the other disciplines involved in patient care as well.

Every one of these handoffs is a potential problem. Our business is incredibly complicated, and given that dozens of details on dozens of patients need to be passed on, the opportunity for error is always present. And the fact that resident work hours are becoming more and more limited increases the need for handoffs and the number of potential errors.

Today, I’ll look at information transfer at the first handoff point, EMS to trauma team. Some literature has suggested that there are 16 specific prehospital data points that affect patient outcome and must be included in the EMS report. How good are we at making sure this happens?

An observational study was carried out at a US Level I trauma center with video recording capabilities in the resuscitation room. Video was reviewed to document the “transmission” part of the EMS report. Trauma chart documentation was also reviewed to see if the “reception” half of the process by the trauma team occurred as well. 

A total of 96 handoffs were reviewed over a one year period. The maximum number of elements in the study was 1536 (96 patients x 16 data elements). The total number “transmitted” was 473, but only 329 of those were “received.” This is not quite as bad as it seems, since 483 points were judged as not applicable by the reviewers. However, this left 580 that were applicable but were not mentioned by EMS. Of the 16 key elements, the median number transmitted was 5, with a range of 1-9. 

This sounds bad. However, the EMS professionals and the physicians have somewhat different objectives. EMS desperately wants to share what they know about the scene and the patient. The trauma team wants to start the evaluation process using their own eyes and hands. What to do?

Bottom line: EMS to trauma team handoffs are a problem for many hospitals. EMS has a lot of valuable information, and the trauma team wants to keep the patient alive. They are both immersed in their own world, working to do what they think is best for the patient. Unfortunately, they could do better if the just worked together a bit more. 

Tomorrow I’ll share a solution to the EMS-trauma team handoff problem.

Related posts:

Reference: Information loss in emergency medical services handover of trauma patients. Prehosp Emerg Care 13:280-285, 2009.

Bystander CPR For People Not In Cardiac Arrest

CPR has increased the survival rate of patients suffering cardiac arrest, and early bystander CPR has been shown to double or triple survival. The sad truth is that CPR is not frequently performed by the general public. The American Heart Association has attempted to simplify CPR to the point that even untrained bystanders can administer chest compressions without a pulse check and without rescue breathing.

Bystander CPR

But what happens if that well-intentioned bystander starts CPR in someone who has not arrested? How often does this happen? Can the patient be injured?

The Medical College of Wisconsin reviewed the charts of all patients who received bystander CPR in Milwaukee County over a six year period. There were 672 incidents of bystander CPR. Of those cases, 77 (12%) were not in arrest when assessed by EMS personnel, and the researchers focused on those patients.

EMS response time averaged 5 minutes, and was greater than 10 minutes in only 2 cases. Average patient age was 43(!). The male/female ratio was just about 50:50, and the majority of the incidents took place in the home or residence.

Hospital records were available for further analysis in 72 of the patients. A quarter were sent home, a quarter admitted to a ward bed, and half were admitted to an ICU. Only 12 (17%) had a cardiac-related discharge diagnosis. The next most common discharge diagnoses were near-drowning, respiratory failure and drug overdose. Younger patients (<19) were usually near-drowning victims, and older patients (>54) were most commonly diagnosed with syncope. Five patients did not survive. Only one CPR injury was identified, which was charted as rhabdomyolysis “secondary to having received CPR” (a weak injury diagnosis, in my opinion).

Bottom line: The potential benefit of bystander CPR outweighs the risk of injury or performing it on a victim who is not in arrest. This study shows that, although these patients may not need CPR, they are generally very ill. Given the rapid EMS response times and the younger average age of the victims, no real injuries occurred. The new American Heart Association recommendations are beneficial and should be distributed widely.

Reference: The frequency and consequences of cardiopulmonary resuscitation performed by bystanders on patients who are not in cardiac arrest. Prehosp Emerg Care 15:282-287, 2011.