Category Archives: Tips

What Is: Lunchothorax?

Here’s an operative tip for trauma professionals who find themselves in the OR. Heard of “lunchothorax?” I’m sure most of you haven’t. The term originated in a 1993 paper on the history of thoracoscopic surgery. It really hasn’t been written about in the context of trauma surgery, though.

Lunchothorax is an empyema caused by pleural contamination in patients with concomitant diaphragm and hollow viscus injury. This most commonly occurs with penetrating injuries to the left upper quadrant and/or left lower back. The two penetrations tend to be in close proximity (diaphragm + stomach), but may occasionally be further away (diaphragm + colon).

One of the earlier papers describing the correlation of gastric injury and empyema was written by one of my mentors, John Weigelt. Although gastric repair is usually simple and heals well, his group did note a few severe complications. Of 243 patients with this injury, 15 developed ones that were considered severe, and 10 of those were empyema! What gives?

It turns out that the combination of gastric contents and pleural space is not a good one. It’s not really clear why this is. Is it bacterial? The acid? Undigested food? I’ve seen cases with what I would consider minimal contamination go on to develop a nasty empyema. This is also borne out in a National Trauma Databank review from 2009. It looked at complications in patients with a diaphragm injury and found that a gastric injury increased the probability of empyema by 3x. Interestingly, there was no increased risk of empyema with a concomitant colon injury.

Bottom line: Lunchothorax, or empyema after even minimal contamination from a hollow viscus, is a dreaded complication of thoraco-abdominal penetrating injury. Any time the stomach and diaphragm are violated, I recommend thoroughly irrigating the chest. It’s probably a good idea for concomitant colon injury as well, but there’s less literature support.

This can be done through the diaphragm injury if it is large enough, or through a chest tube inserted separately. Most of the time, you’ll be placing the chest tube anyway because the pleural space has been violated via the abdomen. In either case, copious lavage with saline is recommended to clear all particulate material, with a few extra liters just for good measure. There’s no data on use of antibiotics, but standard perioperative coverage for the abdominal injuries should be sufficient if the lavage was properly performed.


  • The history of thoracoscopic surgery. Ann Thoracic Surg 56(3):610-614, 1993.
  • Penetrating injuries to the stomach. SGO 172(4):298-302, 1991.
  • Risk factors for empyema after diaphragmatic injury: results of a National Trauma Databank analysis. J Trauma 66(6):1672-1676, 2009. 
Print Friendly, PDF & Email

Keeping Patients Warm In Your Trauma Bay

Hypothermia is the enemy of all trauma patients. It takes their potential bleeding problems and makes them exponentially worse. From the time you strip off their clothes in the trauma resuscitation room, they begin to cool down. And if you live in Minnesota like me (or some similar fun place), they start chilling even before that.

What can you do in the trauma bay to help avoid this potential complication? Here are some of the possibilities, and what I think of them. And I’ll also provide a practical tip to help keep your patient warm  while you can still do a full exam.


– Warming lights in the ambulance unloading area. I know lots of people look at this area and recommend them. Unfortunately, they don’t do a lot. Consider that your patient will move through this space quickly. While it may be cold, they’ll only spend a minute or so getting to the back door to the ED.

– How about the path from the helipad? If this is mostly outside, it can be a problem. If it’s wide open, there aren’t really a lot of options. Cover and heat it? Lots of $$$. Typically, flight crews working in winter climates have bundled up their patient very well, and this is the patient’s primary source of protection from the elements. If the pad is far away from the ED, consider a fancy golf cart to move them quickly, and perhaps get an even fancier one that has a heated enclosure.


– Heat the room! This only works on a moment’s notice if you have a smaller room or a really good heating system. Otherwise, you must keep it cranked it up at all times.

– Close the door! You will not be able to keep the room toasty unless you make sure the door is closed as much as possible. No doors? Then consider the next tips.

– Use radiant heating systems. Some EDs have lights in the ceiling, others have portable units that can be rolled over to your patient.

– Use hot fluids, especially in the winter. At a minimum, all blood products must be administered through a warmer, since they are only a few degrees above freezing. If it’s winter outside, or your patient is already cool, give all IV fluids through the warmer, too.

– Cover your patient. Keep a blanket warmer nearby, and pull several out at the beginning of each resuscitation.

– What about those fancy air blankets? Unfortunately, they are unwieldy. They’re all one piece, they try to fall of the patient all the time, and they limit access for your exam. But there is a solution!

Here’s a clever way to deal with this problem. Use my two-blanket trick. Don’t use just one warm sheet or blanket. Use two! Fold each one in half, so they are each half-length. Place one on the top half of the patient, the other at the bottom, overlapping slightly at the waist. Your whole patient is now covered and toasty. If you need to look at an extremity, fold the blanket that covers it over from right to left (or left to right) to uncover just the area of interest. To insert a urinary catheter, just open the area at the waist, moving the top sheet up a little, the bottom down a little. Voila!

Print Friendly, PDF & Email

Trauma Surgery Tip: How To See The Unseeable – The Answer

Yesterday I posed a scenario where the surgeon needed to see an area of an open abdomen (trauma laparotomy) that could not easily be visualized. Specifically, there was a question as to whether the diaphragm had been violated just anterior to the liver, just under the costal margin.

Short of putting your head in the wound, how can you visualize this area? Or some other hard to reach spot? Well, you could have an assistant insert a retractor and pull like crazy. However, the rib cage might not bend very well, and in elderly patients it may break. Not a good idea.

Some readers suggested breaking out the laparoscopy equipment and using the camera and optics to visualize. This is a reasonable idea, but expensive. Shouldn’t there be some good (and cheap) way to do this?

Of course, and there is. Think low tech. Very low tech. You just need to see around a corner, right. So get a mirror!

Every OR has some sterile dental mirrors lying around. Get one and have your assistant gently hold the liver down while you indirectly examine the diaphragm. Since you’re probably not a dentist, it may take a minute or two to get used to manipulating the mirror to see just what you want. But if you can manage laparoscopic surgery, you’ll get the hang of it quickly.

And if you need more light up in those nooks and crannies? Shine the OR light directly into the abdomen, then place a nice shiny malleable retractor into the area to reflect light into the area in questions. Voila!

Bottom line: A lot of the things that trauma professionals need to do in the heat of the moment will not be found in doctor, nurse, or paramedic books. Be creative. Look at the stuff around you and available to you. Figure out a way to make it work, and make $#!+ up if necessary.

Print Friendly, PDF & Email

Trauma Surgery Tip: How To See The Unseeable

Let me present a scenario and first see how you might solve this problem.

A young man presents with a gunshot to the abdomen in the right mid-back. He is hemodynamically stable, and you get a chest xray. It shows a small caliber slug in the right upper quadrant, but no hemo- or pneumothorax. He has peritoneal signs, so you whisk him off to the OR for a laparotomy.

As you prep the patient for the case, you can feel a small mass just above the right costal margin. You incise the area and produce a 22 caliber bullet. Of course, you follow the chain of evidence rules and pass it off for the police. As you explore the abdomen, it appears that there are no gross injuries. You are concerned, however, that there may be an injury to the diaphragm in proximity to the bullet.

So here’s the question: how can you visualize the diaphragm in this area? The bullet was located below the right nipple. But the diaphragm in this area is covered by the liver, and is parallel to the floor. You can’t seem to feel a hole with your fat finger. But short of putting your whole head in the wound, you just can’t get a good angle to see the area in question.

How would you do it? Please tweet or leave comments with your suggestions. I’ll provide the answer(s) tomorrow!

Print Friendly, PDF & Email

Stuff You Sterilize Other Stuff With May Not Be Sterile??

When one works in the trauma field, or medicine in general, we deal with the need for sterility all the time. We use equipment and devices that are sterile, and we administer drugs and fluids that are sterile. In surgery, we create sterile fields in which to use this sterile stuff.

In the past few years, we’ve come to the realization that the sterility we take for granted may not always be the case. There have been several cases of contaminated implanted hardware. And a few years ago, supposedly sterile injectable steroids were found to be contaminated with fungus, leading to several fatal cases of meningitis.

An article in the New England Journal of Medicine brings a bizarre problem to light: microbial stowaways in the topical products we use to sterilize things. Most drugs and infused fluids are prepared under sterile conditions. However, due to the antimicrobial activity of topical antiseptics, there is no requirement in the US that they be prepared in this way.

A number of cases of contamination have been reported over the years:

  • Iodophor – contamination with Buckholderia and Pseudomonas occurred during manufacture, leading to dialysis catheter infection and peritonitis
  • Chlorhexidine – contaminated with Serratia, Buckholderia and Ralstonia by end users, leading to wound infections, catheter infections, and death
  • Benzalkonium chloride – contaminated with Buckholderia and Mycobacteria by end users, causing septic arthritis and injection site infections

Bottom line: Nothing is sacred! This problem is scarier than you think, because our most basic assumptions about these products makes it nearly impossible for us to consider them when tracking down infection sources. Furthermore, they are so uncommon that they frequently may go undetected. The one telltale sign is the presence of infection from weird bacteria. If you encounter these bugs, consider this uncommon cause. Regulatory agencies need to get on this and mandate better manufacturing practices for topical antiseptics.

Reference: Microbial stowaways in topical antiseptic products. NEJM 367:2170-2173, Dec 6 2012.

Print Friendly, PDF & Email