Category Archives: Technique

How Fast Can You Warm Up A Hypothermic Patient?

‘Tis the season to see hypothermic patients again! The optimal way to warm them up has been debated for years. A number of very interesting techniques have been devised. Ever wonder how fast / effective they are?

I’ve culled data from a number of sources, and here is a summary what I found. And of course, the disclaimer: “your results may vary.”

Warming Technique Rate of Rewarming
Passive external (blankets, lights) 0.5° C / hr
Active external (lights, hot water bottle) 1 – 3° C / hr
Bair Hugger 2.4° C / hr
Hot inspired air in ET tube 1° C / hr
Fluid warmer 2 – 3° C / hr
GI tract irrigation (stomach or colon, 40° C fluid, instill for 10 minutes, then evacuate) 1.5 -3° C / hr
Peritoneal lavage (instill for 20-30 minutes) 1 – 3° C / hr
Thoracic lavage (2 chest tubes, continuous flow) 3° C / hr
Continuous veno-venous rewarming 3° C / hr
Continuous arterio-venous rewarming 4.5° C / hr
Mediastinal lavage (thoracotomy) 8° C / hr
Cardiopulmonary bypass 9° C / hr
Warm water immersion (Hubbard or therapy tank) 20° C / hr
Print Friendly, PDF & Email

REBOA vs ED Thoracotomy: Which One Is Winning?

Many trauma centers are talking about REBOA (resuscitative endovascular balloon occlusion of the aorta), but only a few are actually doing it. And of those, only a handful are doing it regularly and closely studying how it’s working.

The RA Cowley Shock Trauma Center is one of those very few. They have integrated the preparation phase for REBOA (femoral art line insertion) into their initial resuscitation protocols. This allows them to actually perform the technique quickly in any patient who starts to go bad and meets criteria. This center has been using REBOA nearly exclusively since they began studying it  a few years ago. They have actually supplanted ED thoracotomy (EDT) with this technique, and are a leader in producing data and studies on its nuances.

They compared short term outcomes in patients suffering traumatic arrest undergoing REBOA  (2013-2015) to those in patients with EDT (2008-2013). This was a simple study, with easy to understand statistical analyses.

Here are the factoids:

  • 19 thoracotomies and 17 REBOA were performed during the study periods (this shows how uncommon these procedures are, even at a busy center)
  • Average ISS was about the same (31 vs 26). Median GCS was 3 in both groups.
  • Return of spontaneous circulation (ROSC) occurred in 7 EDT and 9 REBOA
  • 13 EDT and 9 REBOA patients survived long enough to get to the OR
  • Mean systolic BP after occlusion was higher after REBOA (80 vs 46 torr)
  • There was only one survivor of the 36, and they received REBOA. This patient actually discharged home. (!)

Bottom line: Shock Trauma is a very busy center, and as you can see, even their REBOA numbers are low. This is why it is so critically important that all REBOA patients be part of a study. We really need to know how well it works, who it works best in, and what the downsides are. In this study, ROSC and survival to OR were statistically identical, but blood pressure was higher with REBOA compared to cross-clamping. Survival was also the same (abysmal), with one excellent outcome in the REBOA group.

The authors believe that REBOA and EDT are equivalent in terms of the variables they looked at. But remember, there are many other factors we need to look at, including things like resource utilization and healthcare worker safety. I strongly urge every center that is performing or considering REBOA to join a multi-center trial and/or report the the REBOA registry to hasten our understanding of this procedure.

Related posts:

Reference: Paradigm shift in hemorrhagic traumaic arrest: REBOA is at least as effective as resuscitative thoracotomy with aortic crossclamping. ACS Scientific Forum, trauma abstracts, 2016.

Print Friendly, PDF & Email

Practical Tip: Penetrating Injury To The Vertebral Artery

This is an uncommon injury. But when encountered it can cause the trauma professional (and the patient) some major headaches. The majority of the vertebral artery injuries you are likely to encounter are caused by blunt trauma. They are generally diagnosed using CT angiography, and the treatment usually consists of low dose anti-platelet agents like aspirin. Occasionally, coiling or stenting using interventional radiology is needed.

But penetrating trauma is a totally different animal. Gunshot is the most common mechanism, because of the small windows available to access the artery within the vertebral canal using a knife. See the course of the artery in the picture below:

Unfortunately, this bony cage also makes it difficult to surgically approach the artery, especially if the field is continually filling with blood.

The techniques for dealing with this injury according to the doctor books are:

  • Send the patient to interventional radiology. Cutting off flow using coils is the preferred technique. Gelfoam and other products are not used because of the concern for distal embolization (to the brain). Stenting may be a consideration for blunt trauma, but not for penetrating.
  • Or, obtain proximal control by ligating the vertebral artery as it takes off from the subclavian. Hmm, this requires either a separate incision, or a supraclavicular extension of your neck incision. It takes time and is not as easy as it sounds.

Generally, the trauma surgeon stumbles upon this injury while doing a trauma neck exploration. Bleeding can be pesky, and may serve to obscure the field. My preferred method of control is:

  • Jam a wad of bone wax into the vertebral canal right where the bleeding is coming from.
  • Then jam another wad into the canal in the space below it. Proximal control!
  • Jam one final wad into the space above, if accessible. Distal control!

End of problem. Then do a thorough evaluation for all other injuries and address them. Feel free to share any additional tips that you may have!

Print Friendly, PDF & Email

Damage Control Dressing: The ABThera (Video)

In the late 1980’s, when we started the work that would be published in the first damage control paper from Penn, we used the vacuum pack dressing. This was first described in a paper from the University of Tennessee at Chattanooga in 1995. Prior to that, the so-called Bogota bag was the usual technique. This consisted of slicing opening up a sterile IV bag (either the standard 1 liter or the urology 3 liter bag for big jobs) and sewing it into the wound. This worked, but it freaked out the nurses, who could see the intestines through the print on the clear plastic bag.

The vacuum pack was patient friendly, with a layer of plastic on the bottom, some absorbent towels in the middle with a drain in place to remove fluid and apply suction, and an adherent plastic layer on top to keep the bed clean. As you can imagine, this was a little complicated to apply correctly. One misstep and things stuck to the bowel or leaked out onto the bed.

In the past few years, a commercial product was developed that incorporated all these principles and was easy to apply. This is the KCI ABThera (note: I have no financial interest in KCI or this product; I just wish I had invented it). The only downside is that there is a small learning curve when first using this product.

The video above shows a demonstration of the application on an abdominal mannikin. It is not as slick as the company videos, but I think it’s more practical, with some good tips.

References:

  • Damage control: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma 35(3):375-382, 1993.
  • Temporary closure of open abdominal wounds. Am Surg 61(1):30-35, 1995.
Print Friendly, PDF & Email