Category Archives: General

Is That Trauma Activation X-ray Ruined?

You are in the middle of a fast-paced trauma activation. The patient is awake, and mostly cooperative. The x-ray plate is under the patient and everyone stands back as the tech gets ready to fire the x-ray machine. At that very moment, your patient reaches up and places his hand on his chest. Or one of the nurses reaches over to check an IV site.

The x-ray tech swears, and offers to re-shoot the image. What do you do? Is it really ruined? They have an extra plate in hand and are ready to slide it under the patient bed.

The decision tree on this one is very simple. There are two factors in play: what do you need to see, and how hard is it to see? The natural reaction is to discard the original image and immediately get a new one. It’s so easy! But take a look at this example of a “ruined” chest xray.

Bottom line: You are looking for 2 main things on the chest x-ray: big air and big blood. Only those will change your management in the trauma bay. And they are very easy to see, even if the image is cut off and off center. Couple that with the fact that an arm overlying the image does not add a lot of “noise” to the image. So look at the processed image first. 99% of the time, you can see what you need, and will almost never have to repeat. [Hint: the same holds true for the pelvic x-ray, too. You are mainly looking for significant bony displacements, which are also easy to see.]

Related posts:

The Soft Cervical Collar: A Piece of Junk?

They are the cliches of the courtroom. The defendant appears before the jury with a cane, a cast, and a soft cervical collar. Looks good, but are they of any use? There are really two questions to answer: does a soft collar limit mobility and does it reduce pain? Amazingly, there’s very little literature on this ubiquitous neck appliance. 

First, the mobility question. It’s a soft collar. It’s made of sponge. So it should be no surprise that it doesn’t reduce motion by much, about 17%. But it is better than no collar at all.

What about pain control? One small retrospective review looked at the effect of a soft collar vs no collar at all on pain after whiplash injury. Keep in mind that the definition of “whiplash” is all over the place, so you have to take it with a big grain of salt. But the authors found that there was no difference in subjective pain scoring with or without the collar. 

Another much older study (1986) compared a soft collar with active motion after whiplash. Subjects who actively moved their neck around had less subjective pain after 8 weeks.

image

Bottom line: The soft cervical collar keeps your neck warm. Not much else. And in my experience, prolonged use (more than a few days) tends to increase uncomfortable neck spasms. So use them as an article of clothing in Minnesota winters, but not as a medical appliance.

Related posts:

References:

  • A comparison of neck movement in the soft cervical collar and rigid cervical brace in healthy subjects. J Manipulative Physiol Ther. 34(2):119-22, 2011.
  • The effect of soft cervical collars on persistent neck pain in patients with whiplash injury. Acad Emerg Med. 3(6):568-73, 1996.
  • Early mobilization of acute whiplash injuries. Br Med J (Clin Res Ed). 292(6521):656-7, Mar 8 1986.

Does Hemostatic Resuscitation Really Work?

Hemostatic resuscitation (HR) is the new buzzword (buzz phrase?) these days. The new ATLS course touts it as a big change, and quite a few publications are being written about it. But, like many new things (think Factor VII), will it stand the test of time?

It has long been recognized that hemorrhage from trauma is bad. Mortality rates are high, and traditional management with crystalloids and then blood products leads to persistent coagulopathy, troublesome bleeding, tissue injury, and finally death. HR was devised to address the early coagulopathy. It concentrates on early coag correction with plasma and platelets, permissive hypotension, and rapid definitive correction of hemorrhage.

The end result of HR has been measured, and both organ perfusion and coagulopathy can be corrected with it. Unfortunately, these measurements are typically taken once hemorrhage control has been achieved. Is looking at (or beyond) the endpoint really the best way to gauge its effectiveness? 

A robust multicenter study scrutinized looked at coagulopathy correction and organ perfusion during active hemostatic resuscitation. They used ROTEM to gauge the former, and lactate levels for the latter. Values were measured on arrival and after administration of every 4 units of blood. Only patients who received at least 4 units were included (106 subjects).

Here are the factoids:

  • Average admission lactate was 6.2 meq/L, so these patients were sick
  • Patients with a lactate > 5 did not clear it until after hemorrhage was controlled and no further blood was needed
  • 43% of patients were coagulopathic by ROTEM on arrival. 
  • Coagulopathy increased for every 4 units of blood given, despite a plasma infusion ratio of close to 1:1 throughout their resuscitation

Bottom line: This was a well-done study on a relatively large number of patients, although a number of weaknesses and potential improvements are pointed out in the discussion. There’s a lot of data in the paper, and I urge you to read it in depth. But it seems to show that hemostatic resuscitation is not necessarily doing what we want it to do during the acute phase of hemorrhage. Both bleeding AND transfusions must be stopped before it appears to work. And even then, there is a delay before ROTEM and lactate parameters return to normal. For now, rapid control of hemorrhage is of utmost importance. We still need to figure out how tools like ROTEM or TEG and various serum markers will help us while we accomplish it.

Reference: Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma 76(3):561-568, 2014.

Blunt Traumatic Arrest In Kids: Are They Little Adults?

Over and over, we hear that children are not just little adults. They are a different size, a different shape. Their “normal” vital signs are weird. Drug doses are different; some drugs don’t work, some work all too well. 

But in many ways, they recover more quickly and more completely after injury. What about after what is probably the biggest insult of all, cardiac arrest after blunt trauma? The NAEMSP and the ACS Committee on Trauma recently released a statement regarding blunt traumatic arrest (BTA):

 “Resuscitation efforts may be withheld in any blunt trauma patient who, based on out-of-hospital personnel’s thorough primary patient assessment, is found apneic, pulseless, and without organized ECG activity upon arrival of EMS at the scene.“

The groups specifically point out that the guidelines do not apply to the pediatric population due to the scarcity of data for this age group.

The Children’s Hospital of Los Angeles and USC conducted a study of the National Trauma Data Bank, trying to see if children had a better outcome after this catastrophic event. Patients were considered as children if they were up to and including age 18.

Here are the factoids: 

  • Of 116,000 pediatric patients with blunt trauma, 7,766 had no signs of life (SOL) in the field (0.25%)
  • The typical male:female distribution for trauma was found (70:30)
  • 75% of those without SOL in the field never regained them. Only 1.5% of these survived to discharge from the hospital.
  • 25% regained SOL with resuscitation, and 14% of them were discharged alive.
  • 499 patients underwent ED thoracotomy, and only 1% survived to discharge. There was no correlation of thoracotomy with survival.
  • It appeared that there was a tendency toward survival for the very young (age 0-4) without SOL, but statistical analysis did not bear this out

Bottom line: Children are just like little adults when it comes to blunt cardiac arrest after trauma. Although it is a retrospective, registry-based study, this is about as big as we are likely to see. And don’t get suckered into saying "but 1.5% with no vital signs ever were discharged!” This study was not able to look at the quality of life of survivors, but there is usually significant and severe disability present in the few adult survivors after this event.

Feel free to try to re-establish signs of life in kids with BTA. This usually means lots of fluid and/or blood. If they don’t respond, then it’s game over. And, like adults, don’t even think about an emergency thoracotomy; it’s dangerous to you and doesn’t work!

Related posts:

Reference: Survival of pediatric blunt trauma patients presenting with no signs of life in the field. J Trauma 77(3):422-426, 2014.

A Tourniquet For Your Abdomen???

Tourniquets for extremity bleeding are definitely back in vogue. Our military experience over the past 20 years has shown us what a life saver this simple tool can be. It’s now carried by many prehospital trauma professionals for use in the civilian population. But what about bleeding from the nether regions? You know what I’m talking about, the so-called junctional zones. Those are the areas that are too proximal (or too dangerous) to put on a tourniquet, like the groin, perineum, axilla, and neck.

Traditionally, junctional zone injury could only be treated in the field with direct pressure, clamps, or in some cases a balloon (think 30Fr Foley catheter inserted and blown up as large as possible, see link below). In the old days, we could try blowing up the MAST trousers to try to get a little control, but those are getting hard to find. 

An Alabama company (Compression Works) developed a very novel concept to try to help, the Abdominal Aortic and Junctional Tourniquet (AAJT). Think of it as a pelvic compression device that you purposely apply too high.

image

Note the cool warning sticker at the bottom of the device!

The developers performed a small trial on 16 volunteer soldiers after doing a preliminary test on themselves (!). The device was placed around the abdomen, above the pelvis, and inflated to a maximum of 250 torr. Here are the factoids:

  • All subjects tolerated the device, and no complications occurred
  • Flow through the common femoral artery stopped in 15 of the 16 subjects
  • The subject in whom it did not work exceeded the BMI and abdominal girth parameters of the device
  • Average pain score after application was 6-7 (i.e. hurts like hell!)

Here’s a list of the criteria that preclude use of this device:

image

Bottom line: This would seem to be a very useful device for controlling hemorrhage from pesky areas below the waist.

BUT! Realistically, it will enjoy only limited use in the civilian population for now. Take a closer look at the exclusion criteria above. Half of the population is ineligible right off the bat (women). And among civilians, more than a third are obese in the US. Toss in a smattering of the other criteria, and the unlikelihood of penetrating trauma to that area in civilians, it won’t make financial sense for your average prehospital agency to carry it. Maybe in high violence urban areas, but not anywhere else.

The company has received approval for use in pelvic and axillary hemorrhage control, so we’ll see how it works when more and larger studies are released (on more and larger people). 

Related post:

Reference: The evaluation of an abdominal aortic tourniquet for the control of pelvic and lower abdominal hemorrhage. Military Med 178(11):1196-1201, 2013.

I have no financial interest in Compression Works.