Tag Archives: whole blood

Little-Known Whole Blood Transfusion Program: Part 2

In my last post, I described a long-standing whole blood transfusion program that was implemented by Royal Caribbean Cruise Lines (RCCL)about 10 years ago. Today, I’ll dig into the specifics of their protocol and review their results.

Here is an image of the protocol. You can click it to download a full-size pdf copy.

Here are the key points in the protocol:

  • It is only implemented if it will take more than 4 hours to get the patient ashore for more advanced care
  • If the patient is hemodynamically stable, permissive hypotension to MAP 75 is encouraged and TXA infusion / Vitamin K administration are considered when appropriate. The patient disembarks at the next port of call with advanced hospital capabilities.
  • If hemodynamically unstable, two large bore IVs are maintained, TXA and Vitamin K are given when appropriate, and whole blood collection and administration are initiated. Helicopter / coast guard transport is deemed acceptable to closest advanced hospital.

And here are the guidelines for donor selection:

  • The donor hierarchy is:
    • sexual partner of the patient
    • male passenger with blood donor card
    • male passenger without blood donor card
    • female passenger with blood donor card (beware of TRALI)
    • medical staff members
    • crew
  • Only one unit is taken from each donor, and they must not be anemic

Here are the factoids describing RCCL’s seven year experience with the program:

  • 73 patients received transfusions, including 67 passengers and 6 crew
  • Mean hemoglobin on presentation was 6
  • A total of 1-6 units were given
  • Six patients ultimately died; no details were given
  • There were no ABO seroconversions, and only two adverse reactions occurred, both allergic
  • The majority of the medical staff felt that this was a valuable program

Bottom line: This is the first whole blood transfusion program I have seen outside of hospitals and the military. Royal Caribbean has incorporated lessons learned from both in developing their protocol. It includes all the principles of balanced resuscitation, including limiting crystalloids, permissive hyportension, and 1:1:1 transfusion ratios. There are many other opportunities to implement similar protocols in areas where medical capabilities are austere, and this protocol should be used as a model to develop them.

Use Of Whole Blood For Massive Transfusion

We’ve been using fractionated blood components in medicine, and trauma specifically, for over 50 years. So why doesn’t component therapy work so well for trauma? Refer to the following diagram. Although when mixed together the final unit of reconstituted blood looks like whole blood, it’s not. Everything about it is inferior.

Then why can’t we just switch back to whole blood? That’s what our trauma patients are losing, right? Unfortunately, it’s a little more complicated than that. The military has been able to use fresh warm whole blood donated by soldiers which has been stored for just a few hours. That is just not practical for civilian use. We need bankable blood for use when the need arises.

This ultimately means that we need to preserve the blood, and this requires a combination of preservatives to prevent clotting and keep the cellular components fresh, and refrigeration to avoid bacterial growth. This is not as simple as it sounds. Adding such a preservative to whole blood dilutes it by about 12%. And there are concerns that cooling it may have effects on platelet function. Recent data suggests that platelet function in cooled whole blood is preserved, but platelet longevity is decreased.

There are other issues with the use of whole blood as well. It contains a full complement of white blood cells, and this may be related to reports of venous thrombosis, respiratory distress, and even graft vs host disease. Unfortunately, removing the white cells (leukoreduction) also tends to remove the platelets, and there is little literature detailing the safety of this practice.

Another problem is the plasma component in whole blood. Universal donor (type O) whole blood may contain significant amounts of anti-A and anti-B antibodies. For these reasons, most blood banks limit the number of whole blood units transfused to a handful. A recent paper from OHSU in Portland details a massive transfusion in which 38 units were given to one patient. There was no transfusion reaction, but platelet counts dipped precipitously. All centers currently using whole blood utilize only low-titer anti-A and anti-B units.

So does whole blood work as expected in the civilian arena? The data is still incomplete, but the total transfusion volume appears to be decreased in patients without severe brain injury. With the increased interest and use of whole blood, it is imperative that more safety and efficacy studies are forthcoming.

Here are some tips on getting started with your own whole blood program:

  • Develop a relationship with a supplier of whole blood. Hammer out the details of the exact product (product age, leukoreduction, titer levels, returnability if not used).
  • Obtain approval from your hospital’s Transfusion Committee!
  • Work with your blood bank to develop processes to ensure proper availability and accountability. What is the maximum number of units that can be used in a patient? When should units be returned to the general pool to ensure they are not wasted?
  • Decide where whole blood will be available. Obviously, the blood bank will house the majority of the product. But should you have it in an ED refrigerator? On air or ground EMS units? These situations demand several extra layers of oversight and add greatly to complexity.
  • Educate, educate, educate! Make sure everyone involved, in all departments, are familiar with your new MTP!

References:

  1. Whole blood for resuscitation in adult civilian trauma in 2017: a narrative review. Anesth Analg 127(1):157-162, 2018.
  2. Massive transfusion of low-titer cold-stored O-positive whole blood in a civilian trauma setting. Transfusion, Epub Dec 27, 2018.

Blood Transfusion With Component Therapy vs Whole Blood

About 40 years ago, blood banks started moving away from keeping whole blood and began separating it into components (packed cells, platelets, plasma, etc.) for more targeted use. For most uses, this is just fine. But what about trauma?

Trauma patients bleed whole blood. Doesn’t it make sense to give whole blood back? Much of our experience with massive transfusion is derived from our colleagues in the military. Two decades ago, the norm was to give 4 units of packed red cells or so, then give two units of plasma, and every once in a while slip in a bag of platelets. Our military experience seems to indicate that this 4:2:1 ratio is not optimal, and that something like 1:1:1 is better.

If you think about it, whole blood is already 1:1:1. Splitting it into components and then giving each one of them back separately seems to be a lot of extra work (and expense) to accomplish the same thing as just giving a unit of whole blood. And if you look at the purple table above, rebuilding a unit of whole blood from components isn’t nearly as good as whole blood. Plus it triples the exposure to infectious agents and antigens, since the components will usually come from (at least) three separate donors. Note that the data in the table above is true for fresh whole blood (not practical in civilian life); banked whole blood will still lose some coagulation activity. 

Is it time to think about supplying whole blood to trauma centers? And actually looking at whether the outcomes are better or not?

Blood Transfusion With Component Therapy

About 40 years ago, blood banks started moving away from keeping whole blood and began separating it into components (packed cells, platelets, plasma, etc.) for more targeted use. For most uses, this is just fine. But what about trauma?

Trauma patients bleed whole blood. Doesn’t it make sense to give whole blood back? Much of our experience with massive transfusion is derived from our colleagues in the military. Two decades ago, the norm was to give 4 units of packed red cells or so, then give two units of plasma, and every once in a while slip in a bag of platelets. Our military experience seems to indicate that this 4:2:1 ratio is not optimal, and that something like 1:1:1 is better.

If you think about it, whole blood is already 1:1:1. Splitting it into components and then giving them back seems to be a lot of extra work (and expense) to accomplish the same thing as just giving a unit of whole blood. Plus it triples the exposure to infectious agents and antigens, since the components will usually come from three separate donors. Note that the data in the table above is true for fresh whole blood (not practical in civilian life); banked whole blood will lose some coagulation activity.

Is it time to think about supplying whole blood to trauma centers? And actually looking at whether the outcomes are better or not?