Tag Archives: spleen

AAST 2019 #3: Delayed Splenectomy In Pediatric Splenic Injury

Nonoperative management of the blunt injured spleen is now routine in patients who are hemodynamically and have no evidence of other significant intra-abdominal injury.  The trauma group at the University of Arizona – Tucson scrutinized the failure rate of this procedure in children because it is not yet well established.

They reviewed 5 years of data from the National Readmission Database. This is actually a collection of software and databases maintained by the federal government that seeks to provide information on a difficult to track patient group: those readmitted to hospitals after their initial event.

Patients who had sustained an isolated spleen injury who were less than 18 years old and who had either nonoperative management (NOM), angioembolization (AE), or splenectomy were analyzed. Outcome measures included readmission rate, blood transfusion, and delayed splenectomy. Common statistical techniques were used to analyze the data.

Here are the factoids:

  • About 9500 patients were included, with an average age of 14
  • Most (77%) underwent NOM, 16% had splenectomy, and 7% had AE (no combo therapies?)
  • Significantly more patients with high grade injury (4-5) had splenectomy or AE than did the NOM patients (as would be expected)
  • A total of 6% of patients were readmitted within 6 months of their initial injury: 12% of NOM *, 8% of AE *, and 5% of those with splenectomy (* = statistically significant)
  • The NOM and AE patients were also more likely to receive blood transfusions during their first admission
  • Delayed splenectomy occurred in 15% of cases (7% NOM and 5% AE) (these numbers don’t add up, see below)
  • Statistical analysis showed that delayed splenectomy was predicted by high grade injury (of course), blood transfusion (yes), and nonoperative management (huh?)
  • In patients who were readmitted and splenectomized, it occurred after an average of 14 days for the NOM group and 58 days for AE (huh?)

The authors concluded that “one in seven children had failure of conservative management and underwent delayed splenectomy within 6 months of discharge.” They stated that NOM and AE demonstrated only a temporary benefit and that we need to be better about selecting patients for nonoperative management.

Hmm, there are several loose ends here. First, what is the quality of the study group? Was it possible to determine if these patients had been treated in a trauma center? A pediatric vs adult trauma center? We know that there are outcome disparities in spleen trauma care at different types of trauma centers. 

Next, are they really pediatric patients? Probably not, since age < 18 were included and the average age was 14. Injured spleens in pre-pubescent children behave much better than adolescents, which are more adult-like.

And what about the inherent bias in the “readmission data set?” You are looking only at patients who were readmitted! By definition, youare looking at a dataset of poorer outcomes. What if you had identified 9,500 initial patient admissions from trauma registries and then tried to find them in the readmission set. I know it’s not possible to do that, but if it were I would bet the readmission and delayed splenectomy numbers would be far, far lower.

And what about those delayed splenectomy numbers? I can’t get the percentages to match up. If 15% of the 7965 patients who didn’t have an initial splenectomy  had it done later, how does 7.2% of the 7318 NOM patients and 5.3% of the 1541 AE patients add up?

Bottom line: The usual success rate tossed around for well-selected nonoperative management is around 93% when optional adjunctive AE is part of the algorithm. That’s a 1 in 14 failure rate, and it generally occurs during the initial hospitalization. In my experience, readmissions are very rare. And that’s for adults; children tend to behave even better!

I wouldn’t consider changing my practice yet based on these findings, but the devil will probably be in the details!

Here are some questions for the presenter and authors:

  • Please provide some detail on the data set. We really need to know an age breakdown and the types of centers they were treated at, if available.
  • Discuss the potential data set bias working backwards from a database that includes only readmitted patients.
  • Please clarify the delayed splenectomy statistics to help match up the numbers.

I’m anticipating a great presentation at the meeting!

Reference: Delayed splenectomy in pediatric splenic injuries: is conservative management overused? AAST 2019 Oral abstract #8.

In The Next Trauma MedEd Newsletter: Update On Spleen Injury

The next issue of Trauma MedEd will be sent out to subscribers over the weekend, and will provide an update on what’s new with spleen injury. Topics will include:

  • Update To Spleen Injury Scaling / Grading
  • Overwhelming Post-Splenectomy Infection
  • Spleen Vaccines
  • Early Mobilization In Solid Organ Injury
  • Decreasing Unneeded Blood Draws

As always, this month’s issue will go to all of my subscribers first. If you are not yet one of them, click this link right away to sign up now and/or download back issues.

Unfortunately, non-subscribers will have to wait until I release the issue on this blog, in mid-June. So sign up now!

Solid Organ Injury Practice Guideline Updated

Regions Hospital developed a clinical practice guideline for solid organ management in 2002-2003. It has been revised a few times over the years, as any good guideline should with the availability of new data.

I’ve just put the finishing touches on the latest revision as a result of the updated organ scaling rules published by the American Association for the Surgery of Trauma. I reviewed the new scales for both liver and spleen earlier this year (links below). In the previous iteration of the scaling system, the importance of contrast pooling (pseudoaneurysm) or extravasation beyond the organ was not well defined. 

The new guideline explicitly includes these injuries in the high grade group, which for us is grade IV or V. Technically, pseudoaneurysm of the liver is only grade III, but in my opinion demands angiographic investigation and embolism. Thus the inclusion in the high grade / angiography arm of our guideline.

For those of you who have not seen this guideline before, there are several important directives that are listed on the left side of the page:

  • Patients are NOT made NPO
  • They do NOT have activity restrictions (such as bed rest)
  • Serial hemoglins are NOT drawn
  • An abdominal CT scan is NOT repeated

These changes were made in 2015 based on our clinical experience that properly selected patients almost never failAnd they still don’t, so why starve, restrain, poke, and re-irradiate them?

Additionally, we included explicit impact activity restrictions for post-discharge so that patients would get the same message from all members of our team.

Click the image below to download the guideline and have a look. I’m interested in your comments!

Related posts:

APSA Activity Restrictions After Solid Organ Injury: Aren’t We Done With That Yet?

Nearly 20 years ago, the American Pediatric Surgical Association (APSA) published a clinical guideline for management of solid organ injury in children. Part of the guideline included activity restrictions, specifically for a period of time after injury. This was generalized by many clinicians to include a period of in-hospital bed rest.

A paper has just been published that examines the usefulness of restricting activity in pediatric patients with solid organ injury. It was authored by a consortium of 10 Level I pediatric trauma centers, and included all patients through age 18 who did not have a concomitant significant renal injury and no pancreatic injury. All injuries were diagnosed by CT scan over a 33 month period.

Activity restrictions were given to all patients upon discharge, which limited sports, wheeled recreational activities, and anything else requiring two feet off the ground. A phone survey was conducted 60 days post-discharge to judge compliance. Unplanned return to ED, readmission, and complications were also assessed.

Here are the factoids:

  • A total of 1007 patients were studied, and 99 were excluded due to concomitant pancreatic or high grade renal injury. An additional 79 were excluded due to missing injury grade or operative management.
  • Of the remaining patients, only 366 were available for 60-day followup
  • 279 claimed to adhere to activity restrictions; 13% returned to the ED and 6% were readmitted.
  • 49 admitted that they did not pay attention to the restrictions, and only 4 (8%) returned to the ED. None were hospitalized.
  • Even in the high-grade injury patients, there was no difference between compliant or noncompliant groups
  • No patient in either group bled post-discharge

Bottom line: Due to the nature of this study (specifically the phone survey component), there will be degradation of the data. Some patients do not want to admit that they didn’t follow the doctor’s orders. In theory, this could increase the number of complications / returns to ED in the “compliant” group. But it did not. 

The other issue I have with this study is that it was not stratified by age. The spleen of an 18 year old is very different than that of a 6 year old. Sixty years ago, we used to take spleens out in adults with a diagnosed injury. The reason we moved toward nonoperative management in adults was the very favorable experience we had in children. Unfortunately, nowhere in this paper is age broken out. Typically, the number of older children (who are really adults) with the injury far outnumber the younger ones, which also tends to increase the number of complications seen. But once again, we did not. Small numbers? Possibly. 

So what are we to make of all this? Basically, it tells us that we’ve been trying to restrict activity in our patients with liver and spleen injury for no good reason. And this applies especially to the children. Look at your own clinical experience, and try to recount how many “failures” you’ve seen due to failure to follow activity restrictions. More typically, failures are due to undiagnosed or untreated pseudoaneurysms. 

It’s time to rethink your solid organ management protocol, if you haven’t already. Do you really need a period of NPO status? Or bedrest? Or activity restriction? And have you ever tried to restrict activity in a 6-year old? Have a look at the guideline we’ve used at my hospital for nearly 20 years! We got rid of the NPO and bedrest restrictions a while ago. Now it’s time to start reducing the activity restrictions!

References:

  • Evidence-Based Guidelines for Resource Utilization in Children With
    Isolated Spleen or Liver Injury. J Ped Surg 35(2):164-169, 2000.
  • Adherence to APSA activity restriction guidelines and 60-day clinical outcomes for pediatric blunt liver and splenic injuries (BLSI). J Ped Surg in Press, 2018.

Best of AAST #10: Pediatric Contrast Extravasation And Pseudoaneurysms

There is a significant amount of variation in the management of pediatric solid organ injury. This is well documented between adult and pediatric trauma centers in t, but also apparently between centers in different countries. A poster from a Japanese group in Okinawa Japan will be presented this week detailing the relationship between contrast extravasation after spleen or liver injury and pseudoaneurysm formation.

In adults, the general rule is that pseudoaneurysms just about anywhere slowly enlarge and eventually rupture. This group sought to define this relationship in the pediatric age group. They performed a multi-center observational study of retrospectively enrolled children, defined as age 16 and less. Those who had contrast extravasation on initial CT were monitored for later pseudoaneurysm formation.

Here are the factoids:

  • 236 patients were enrolled across 10 participating centers, with about two-thirds having liver injury and the remainder with splenic injury
  • 80% of patients underwent followup CT scan (!!)
  • 33 patients (15%) underwent angiography (!!!!)
  • 17 patients with CT scan (2%) had pseudoaneurysm formation and 4 of them had a delayed rupture
  • Overall, pseudoaneurysms occurred in 29% of those with contrast extravasation and 5% without extravasation
  • The authors concluded that contrast extravasation was significantly associated with pseudoaneurysm formation after adjusting for variables such as ISS, injury grade, and degree of hemoperitoneum

Bottom line: This is an abstract, so a lot is missing. What was the age distribution, especially among those who underwent angiography? Was the data skewed by a predominantly teenage population, whose organs behave more like adults? The abstract answers a question but ignores the clinical significance.

For those trauma professionals who routinely care for pediatric patients, you know that contrast extravasation in children doesn’t act like its adult counterpart. Kids seldom decompensate, and for those who are mistakenly taken for angiography, the extravasation is frequently gone. The authors even admitted in the conclusion that aggressive screening and treatment for pseudoaneurysm was carried out.

The real question is, what is the significance of a solid organ pseudoaneurysm in children? Based on my clinical experience and reading of the US literature, not much. Of course, there is a gray zone as children move into adulthood in the early to mid-teens. But this does not warrant re-scanning and there should be no routine angiography in this age group. Contrast extravasation in pediatric patients warrants close observation for a period of time. But intervention should only be considered in those who behave clinically like they have ongoing bleeding. 

Reference: Association between contrast extravasation on CT scan and pseudoaneurysm in pediatric blunt splenic and hepatic injury: a multi-institutional observational study. Poster 31, AAST 2018.