Tag Archives: EMS

Does Trauma Team Prenotification By EMS Decrease Mortality?

A few months ago, I heard this statement at a conference I was attending:

“Of course, prenotification of the trauma team by EMS decreases hospital mortality”

And of course, whenever I hear someone say “of course”, it makes me think about it. How do we know for sure? So I made one of my frequent trips to PubMed to find the basis for the statement.

And guess what? He shouldn’t have said “of course.” The literature is very scarce on this topic. There are actually some good papers detailing the advantages of prehospital notification for things like stroke and STEMI. But trauma?

A group in Melbourne, Australia performed a systematic review of the literature on this topic for the Australia-India Trauma System Collaboration. They were interesting in finding information about early (<24 hour) and overall (<30 day) mortality, as well as trauma team presence, time to critical hospital interventions, and hospital length of stay. Over a thousand articles were identified, but half did not have proper study design, and a quarter weren’t about notification. After excluding those, and others that failed other criteria, they were left with only three to review!

Here are the factoids:

  • Two of the studies were small, with only 81 and 269 participants and individual hospitals
  • The remaining study was a very large retrospective analysis of over 72,000 patients from 59 hospitals in Canada
  • All three had serious risk for bias and significant confounding variables
  • The large study showed a significant improvement in overall mortality from 32% to 23%, the smaller studies did not. But the study quality was so poor for this outcome that we can’t really be certain, and these numbers seem very high coming from Canada.
  • No conclusions could be drawn for short term mortality, length of stay, or time to interventions in the ED
  • The studies only involved high-income countries; nothing could be learned for low to medium-income countries.

Bottom line: Three studies in 27 years??! So sad. It certainly seems like having the trauma team informed and prepped in advance should count for something. But like so many other things in this business, we just don’t know for sure. Having everyone in place and ready to receive the patient, and getting other in-hospital resources ready (e.g. OR) may shorten time to definitive, life-saving treatment. But for now, we’ll just have to pretend. Until someone designs and performs a much better study.

Related posts:

Reference: Prehospital notification for major trauma patients requiring emergency hospital transport: A systematic review. J Evidence Based Med 10(3):212-221, 2017.

Can Prehospital Providers Accurately Estimate Blood Loss?

EMS providers are the trauma professional’s eyes and ears when providing transportation from the scene of an accident. We rely on their assessment of the mechanism of injury and the amount of blood lost. We tend to believe in the accuracy of those assessments.

A study was carried out that tested EMS personnel on their ability to accurately estimate specific amounts of blood that were left at a simulated accident scene. The blood volumes tested were 500cc, 1000cc, 1500cc and 2100cc. A total of 92 professionals participated, and there was an even split into basic EMTs (34%), intermediate/critical care EMTs (33%) and paramedics (31%). Experience levels were as follows: 0-5 years 43%, 6-10 years 30%, >10 years 31%.

The results were as follows:

  • 87% underestimated the quantity of blood
  • 9% overestimated
  • 4% guessed the exact amount
  • Experience or credentialing level did not matter

Only 8% of the subjects were within 20% of the actual volume, and an additional 19% were within 50%. In general, most medics underestimated the amount of blood lost, and their guesses were worse with higher volumes. The median guess for the 2100cc loss group was only 700cc!

EMS Blood Loss Estimates

Bottom line: Visual estimates of blood loss are extremely inaccurate, and are most likely  underestimates. Physicians in the ED should rely on exam and physiology to help determine the amount of blood loss. For safe measure, multiply the reported blood loss of the EMT or paramedic by 2 or 3 to get a realistic number.

Reference: Patton et al. Accuracy of Estimation of External Blood Loss by EMS Personnel. J Trauma 50(5), 914, 2001.

(Mis)Use of Helicopter Transport For Pediatric Trauma

Helicopter transport is an integral and important part of modern day trauma care. Since the inception helicopter emergency medical services (HEMS) for civilian use in the 1970’s, its use has been steadily increasing. And it’s expensive, at least five times more costly than ground transport. Plus, there are risks to both crew and patient, in that there have been 200 deaths of both patients and flight crews. Indeed, flight crews have one of the riskiest jobs, with 5 times more on-the-job deaths than police officers.

So it becomes very important to make sure that this mode of transport is justified. As I wrote previously, the adult HEMS literature is extensive, but not terribly convincing. There is far less data available regarding pediatric patients. And the data that does exist suggests that there may be significant overtriage and overuse.

A study using the National Trauma Data Bank (NTDB) was performed by researchers at Duke University. They reviewed the data for a 5 year period (2007-2011), which is fairly old in my opinion. And they included “children” up through age 18, which are also a bit old, in my opinion. Since there are no real quantitative criteria for overtriage in place, the authors picked three: low injury severity (ISS<10), normal physiology (RTS=12), and low predicted mortality using TRISS (<5%). A total of 127,489 patient records were analyzed.

Here are the factoids:

  • 14% arrived via helicopter EMS,  56% by ground EMS, and 29% by private vehicle or walk-in
  • HEMS patients were more likely to have head, thoracic, or abdominal injuries, and overall severe injuries (good!)
  • Adjusted mortality for patients transported by air was significantly less than for ground (really good)
  • 38% of HEMS patients had ISS < 9, and 66% had completely normal physiology (bad)
  • Overall, 32% to 82% of children did not meet criteria for appropriate transport

Bottom line: There are a number of flaws in this study that could be improved upon. However, it does provide some interesting data. Helicopter transport does save lives in the younger population, and was estimated at 2 per 100 flights. This is very promising. However, offsetting this was the fact that nearly half of transports failed one or more arbitrary appropriateness criteria. The recommendations I published yesterday need to be adopted, and both state trauma systems and local EMS agencies need to develop and enforce guidelines to optimally use this valuable and expensive resource.

Reference: Current use and outcomes of helicopter transport in pediatric trauma: a review of 18,291 transports. J Ped Surg in press 27 Oct 2016.

Helicopter EMS: The Recommendations

So after two days of pros and cons about helicopter EMS (HEMS), we lead up to this. The American College of Surgeons Committee on Trauma, Emergency Medical System subcommittee, has released a set of guidelines on appropriate use of HEMS. It’s been endorsed by the National Association of EMS Physicians and looks like a lot of thought has gone into it.

Here are the factoids about the HEMS guidelines:

  • Must be integrated with your trauma system
  • Must utilize standardized field triage guidelines that should be applied consistently throughout your trauma system
  • Is blind to the insurance status of the patient
  • Uses a regional dispatch system. Self-launch should never happen.
  • Referring physician to receiving physician conversations must occur when considering transportation mode (air vs ground) for interfacility transfers
  • There must be good online medical direction from a physician
  • Offline medical direction must be based on protocols and policies developed by the trauma system
  • There must be regular PI review of all HEMS transports to ensure compliance
  • HEMS crews must have regular training opportunities
  • A culture of safety must be maintained

Bottom line: We absolutely must take a critical look at our patient transport practices and procedures. To ensure even-handed application of best practices, our state trauma systems are going to have to step up and address this issue so the right patient will get to the right hospital at the right time, safely and cost effectively.

Reference: Appropriate use of Helicopter Emergency Medical Services for transport of trauma patients: Guidelines from the Emergency Medical System Subcommittee, Committee on Trauma, American College of Surgeons. J Trauma 75(4):734-741, 2013.

Helicopter EMS: The Risks

Yesterday, I wrote about the (unclear) benefits of helicopter EMS transports. Today, I’ll cover the risks. The number of medical helicopters in the US has grown dramatically since 2002.

image

As can be expected, the number of mishaps should go up as well.

image

Although it looks like the fatal and injury accidents peaked and then declined, it does not look as good when compared to the rest of the aviation industry. Consequently, being on a helicopter EMS (HEMS) crew has become one of the more dangerous professions.

image

And unfortunately, the numbers have not improved much during the past five years. So what to do? Make it a big PI project. Approach it systematically, analyze the issues, and create some guidelines and protocols for all to follow.

Tomorrow, I’ll review  guidelines for HEMS released by the American College of Surgeons Committee on Trauma.

Reference: Medical helicopter accidents in the United States: a 10 year review. J Trauma 56:1325-1329, 2004.