Tag Archives: EMS

Prehospital Lift-Assist Calls

Here’s something I was completely unaware of until just a few years ago. A number of 9-1-1 calls (quite a few, I am told) are made, not for injury or illness, but because the caller needs help getting back into bed, chair, etc. It is also common that prehospital providers are frequently called back to the same location for the same problem, or a more serious one, within hours or days.

Yet another study from Yale looked at the details of lift-assist calls in one city in Connecticut (population 29,000) during a 6 year period. The town has a fire department based EMS system with both basic and advanced life support, and they respond to 4,000 EMS calls per year.

Here are the factoids:

  • Average crew time was about 20 minutes
  • 10% of cases required additional fire department equipment, either for forced entry or for assistance with bariatric patients
  • About 5% of all calls were for lift-assist, involving 535 addresses
  • Two thirds of all calls went to one third of those addresses (174 addresses)
  • There were 563 return calls to the same address within 30 days (usual age ~ 80)
  • Return calls were for another lift-assist (39%), a fall (8%), or an illness (47%)

Bottom line: It looks to me that we are not doing our elderly patients any favors by picking them up and putting them back in their chair/bed. Lift-assist calls are really a sentinel event for someone that is getting sick or who has crossed the threshold from being able to live independently to someone who needs a little more help (assisted living, etc). Prehospital personnel should systematically look at and report the home environment, and communities should automatically involve social services to help ensure the health and well being of the elder. And a second call to the same location should mandate a medical evaluation in an ED before return to the home.

Reference: A descriptive study of the “lift-assist” call. Prehospital Emergency Care 17(1):51-56, 2013.

EAST 2016: Pain And Tourniquet Efficacy

Ischemia hurts. And tourniquets induce ischemia
on purpose. So logically, tourniquet application should hurt. In a hospital
setting, Doppler ultrasound is used to confirm loss of arterial inflow to the
extremity. In the field, the usual end point is cessation of bleeding. The idea
is to stop tightening the moment that bleeding stops. Unfortunately, this is
not very exact. So the next question is, can pain after tourniquet application
be used to predict how well it is working?

The group at Cook County in Chicago measured
pressures, arterial occlusion, and pain in various extremities in a group of
healthy volunteers (!!). Fortunately for them, complete occlusion was only
maintained for a minute.

Here are the factoids:

  • Three tourniquet systems were used: an
    in-hospital pneumatic tourniquet, the CAT™, and the SWAT™
  • Readings were taken on left and right upper
    arms, the forearms, legs, and the right thigh
  • Using a pain scale of 0-10, tourniquet
    application did not generally induce severe pain
  • Pain scores were 1-3 in the upper arms and forearms,
    3-4 in the thigh, and 2-3 in the leg

Bottom
line: Strangely enough, tourniquet application did not produce severe pain in
any of the subjects. Thigh application tended to be more painful. But,
generally speaking, pain cannot be used as an indicator of effective
application. In the field, cessation of bleeding is the best indicator. And in
the hospital, Doppler ultrasound confirmation should be the standard. In any
case, if the patient is experiencing undue pain after application, check the tourniquet and its positioning.
Something else might be wrong!

Reference:
Pain is an accurate predictor of tourniquet efficacy. EAST 2016 Poster abstract
#23.

EAST 2016: Scene Time And Mortality

The old “scoop and run” vs “stay and play” debate has gone on for years. It would seem to be intuitive that trauma patients, who should be assumed to be bleeding to death, would do better with shorter prehospital times and quicker transport to definitive care. 

However, several studies have not shown worse outcomes in the “stay and play” patients. Once again, mortality is a very crude indicator of “worse” outcomes, and may not be a good enough measure. Nonetheless, the debate continues to rage. A group at the University of Pittsburgh used the Pennsylvania Trauma Registry to review a huge number of EMS transports, looking at mortality as the measure of interest.

Recognizing that total prehospital time can be influenced by delays in specific phases (response, scene, or transport), they analyzed the impact of problems in each. If one particular phase represented more that 50% of the total prehospital time, it was considered a delay. Logistical regression was used to match patients to try to control for any confounding issues.

Here are the factoids:

  • Over 164,000 records with prehospital times were reviewed over a 14 year period.
  • There was a statistically significant increase in mortality if the scene time phase was prolonged.
  • No differences in mortality were noted with longer response or transport times.
  • Prolonged extrication and intubation had a tendency to prolong scene time, and were independently associated with higher mortality.
  • Lengthy scene time without extrication or intubation was not associated with higher mortality.

Bottom line: This registry-based study has helped us to slice and dice the prehospital time issue a little bit better. As with other studies, the times themselves may not necessarily be the problem. It’s what is causing the delay that matters. Extrication and intubation tend to indicate sicker trauma patients, but they are also somewhat unavoidable. Prehospital trauma professionals will need to focus on tools and exercises that save time during these critical interventions.

Reference: Not all prehospital time is equal: influence of scene time on mortality. EAST 2016 Oral abstract #9, resident research competition.

Making The Trauma Team Time Out Even Better!

Over the past two days, I’ve discussed a method for optimizing the hand-off process between prehospital providers and the trauma team. Besides improving the quality and completeness of information exchange, it also fosters a good relationship between the two. All too often, the medics feel that “the trauma team is not listening to me” if the procedure is to move the patient onto the ED bed as quickly as possible.

And they are right! As soon as the patient hits the table, the trauma team starts doing what they do so well. It’s impossible for humans to multi-task, even though they think they can (look at texting and driving). We switch contexts with our brain, from looking at the patient to listening to EMS, back and forth. And it takes a few extra seconds to switch from one to the other. Team members will not be able to concentrate on the potentially important details that are being relayed.

What should you do if the team doesn’t want to wait?

First, educate them. Except for those who are in extremis or arrest, the patient can wait on the EMS stretcher for 30 seconds. Nothing harmful is going to happen in that short period.

Then, create a hard stop. The easiest way to do this is to place a laminated copy of the timeout procedure on the ED bed. And the rule is that the card doesn’t move until the timeout is done. This is very similar to what happens in the OR. The process should take only 30 seconds, then it’s over and the team can start.

Here’s a copy of a sample TTA Timeout card:

Download a TTA timeout card

Modify it to suit your hospital and process, and try it out!

Related posts:

Thanks to the trauma team at Ridgeview Hospital in Waconia MN for telling me about this cool trick!

Prehospital To Trauma Team Handoff: A Solution

I wrote about handoffs between EMS and the trauma team yesterday. It’s a problem at many hospitals. So what to do?

Let’s learn from our experience in the OR. Best practice in the operating room mandates a specific time out process that involves everyone in the OR. Each participant in the operation has to stop, identify the patient, state what the proposed procedure and location is, verify that the site is marked properly, and that they have carried out their own specific responsibilities (e.g. infused the antibiotic).

Some trauma centers have initiated a similar process for their trauma team as well. Here’s how it works:

  • The patient is rolled into the resuscitation room by EMS personnel, but remains on the stretcher.
  • Any urgent cares continue, such as ventilation.
  • The trauma team leader is identified and the EMS lead gives a brief report while everyone in the room listens. The report consists of only mechanism, all identified injuries, vital signs (including pupils and GCS), any treatments provided. This should take no more than 30 seconds.
  • An opportunity for questions to be asked and answered is presented
  • The patient is moved onto the hospital bed and evaluation and treatment proceed as usual.
  • EMS personnel provide any additional information to the scribe, and may be available to answer any additional questions for a brief period of time.

Bottom line: This is an excellent way to improve the relationship between prehospital and trauma team while improving patient care. It should help increase the amount of clinically relevant information exchanged between care providers. Obviously, there will be certain cases where such a clean process is not possible (e.g. CPR in progress). I recommend that all trauma programs consider implementing this “Trauma Activation Time Out For EMS” concept.

Tomorrow, I’ll share a best practice to make this process even better!

Related posts:

image