Tag Archives: ED thoracotomy

The “Backward Finochietto” Problem

Resuscitative thoracotomy is a (sometimes) life-saving procedure reserved for trauma patients in extremis. Thankfully, most trauma centers do very few of these a year. However, that makes it one of those “high severity – low frequency” procedures that generate many, many quality improvement problems. Many of these issues are due to operator unfamiliarity or equipment availability.

Today, I’ll highlight a problem that crops up occasionally at various trauma centers across the US: the “backward Finochietto.” One of the most essential components of the resuscitative thoracotomy is rapid access to the chest. A large skin incision is typically made, the thoracic wall and intercostal musculature are divided, and the pleural space is entered.

It’s not easy to insinuate your arm between the ribs in an average person. But, of course, there’s a retractor for that! Von Mikulicz presented the first rib spreader at a German surgical society meeting in 1904.  Various versions of this instrument were devised over the next three decades to make it easier and faster to use.

The Finochietto retractor was introduced in 1936 and boasted several enhancements. It used a rack and pinion system to make it easier for the surgeon to spread the chest wall and made it unlikely to close on its own. The turning lever was hinged so it could flattened and placed out of the surgical field. The blades contained fenestrations so chest wall tissue could protrude into them and keep it from slipping when opened. It remains a workhorse instrument for us today and is found in most instrument packs for resuscitative thoracotomy.

But there is a potential problem. Some Finochietto retractors consist of only two pieces: a blade with the linear gear teeth (the rack) and another blade that fits onto it with the turning handle (the pinion). See the image below:

Looks great, right? However, there is one downside. The retractor parts that hook into the soft tissue are of a fixed depth. What if your patient has a more generous body habitus? Placing multiple sets of this retractor into the thoracotomy pack is not practical.

The solution is to allow detachable blades of various sizes. Here’s a modern-day example:

The good news is that the retractor tips are interchangeable. The bad news is that they are sometimes interchangeable with the wrong arm of the retractor! Hence the “backward Finochietto” problem. It’s impossible to use the retractors with the blades on the wrong side, and it takes time the trauma professional does not have to figure out how to snap them off and switch them around.

So what’s the solution? This is clearly an instrument reprocessing quality issue. These instruments are expensive, so your hospital may not be excited about purchasing new ones just for the trauma bay. It all boils down to foolproofing it in as many ways as possible.  Here are some tips:

  • Provide an educational session for all of the reprocessing techs. Unfortunately, this effect will wear off as staff turnover occurs.
  • Post a photograph of a properly assembled retractor for the techs to use when processing the tray.
  • Use colored instrument marking tape on each piece of the instrument. For example, a green tape strip should be placed on both the rack arm of the retractor and the left blade. Use red tape for the pinion arm and the right blade. All the tech needs to do now is match the colors as they assemble the retractor.

Bottom line: This problem is more common than you may think. Ask one of your old-timer trauma surgeons and I’ll bet they can tell you some stories. But it is easily avoided with a little creativity and some tape! Be sure to do it now so it doesn’t pop up in the heat of a resuscitative thoracotomy .

Blunt Traumatic Arrest In Kids: Are They Little Adults?

Over and over, we hear that children are not just little adults. They are a different size, a different shape. Their “normal” vital signs are weird. Drug doses are different; some drugs don’t work, some work all too well.

But in many ways, they recover more quickly and more completely after injury. What about after what is probably the biggest insult of all, cardiac arrest after blunt trauma? The NAEMSP and the ACS Committee on Trauma previously released a statement regarding blunt traumatic arrest (BTA):

 “Resuscitation efforts may be withheld in any blunt trauma patient who, based on out-of-hospital personnel’s thorough primary patient assessment, is found apneic, pulseless, and without organized ECG activity upon arrival of EMS at the scene.“

The groups specifically point out that the guidelines do not apply to the pediatric population due to the scarcity of data for this age group.

The Children’s Hospital of Los Angeles and USC conducted a study of the National Trauma Data Bank, trying to see if children had a better outcome after this catastrophic event. Patients were considered as children if they were up to and including age 18.

Here are the factoids:

  • Of 116,000 pediatric patients with blunt trauma, 7,766 had no signs of life (SOL) in the field (0.25%)
  • The typical male:female distribution for trauma was found (70:30)
  • 75% of those without SOL in the field never regained them. Only 1.5% of these survived to discharge from the hospital.
  • 25% regained SOL with resuscitation, and 14% of them were discharged alive.
  • 499 patients underwent ED thoracotomy, and only 1% survived to discharge. There was no correlation of thoracotomy with survival.
  • It appeared that there was a tendency toward survival for the very young (age 0-4) without SOL, but statistical analysis did not bear this out

Bottom line: Children are just like little adults when it comes to blunt cardiac arrest after trauma. Although it is a retrospective, registry-based study, this is about as big as we are likely to see. And don’t get suckered into saying “but 1.5% with no vital signs ever were discharged!” This study was not able to look at the quality of life of survivors, but there is usually significant and severe disability present in the few adult survivors after this event.

Feel free to try to re-establish signs of life in kids with BTA. This usually means lots of fluid and/or blood. If they don’t respond, then it’s game over. And, like adults, don’t even think about an emergency thoracotomy; it’s dangerous to you and doesn’t work!

Reference: Survival of pediatric blunt trauma patients presenting with no signs of life in the field. J Trauma 77(3):422-426, 2014.

ED Thoracotomy: Kids ARE Just Small Adults

You’ve undoubtedly read this trite phrase somewhere in your training: “Kids aren’t just small adults!” There are many examples where this is absolutely true. Think about arterial extravasation in solid organ injury. Or severe traumatic brain injury. There are major differences in treatment aggressiveness for both of these.

But what about the code situation? I’ve noted a peculiar phenomenon over the years with regard to pediatric codes of all kinds. Adults tend to persist far longer at resuscitative efforts over children than they normally would on other adults. And what about that most extreme code situation, the emergency thoracotomy?

I’ve also seen the use of this procedure in children who don’t meet the usual adult criteria. But they are kids, right? They can bounce back from more severe insults, right? I hope that I’ve convinced you over the years that one can’t just assume and generalize anything. Things that seem like so much common sense often turn out to be wrong. Think back to the days of the stress / spicy food theory of peptic ulcer disease. This seems so silly now that we recognize the role of H. Pylorii.

Scripps Mercy adult and Rady Children’s Hospital pediatric trauma centers in San Diego performed an extensive review of the National Trauma Data Bank over a three year period. They focused on patients 16 years of age or less who underwent ED thoracotomy within 30 minutes of arrival at the trauma center. They focused on procedure indications and the eventual outcomes.

Here are the factoids:

  • A total of 114 patients were recorded in the NTDB, with a mean age of 10 years and median Injury Severity Score of 26 (this is the three year experience in the entire US in three years!)
  • Males were disproportionately involved at 69%, although this is less than in adults
  • Thoracotomy was performed promptly, with a median time after arrival of 5 minutes
  • Mechanism of injury was almost evenly split between penetrating (56%) and blunt (44%)
  • Blunt mechanism mortality was 94% vs 88% for penetrating
  • Penetrating injury outside of the thorax was uniformly fatal
  • Patients without signs of life on arrival, regardless of mechanism, also had a 100% mortality rate
  • Treatment at an adult trauma center, freestanding pediatric center, or combined center had no impact on these dismal outcomes

Bottom line: This is an interesting paper, and shows that the outcomes after ED thoracotomy in kids is even more dismal than in adults. This is particularly true for children arriving without vital signs and for penetrating abdominal trauma.

However, the authors go on to suggest a practice guideline for pediatric emergency thoracotomy similar to the EAST adult guidelines based on their study findings. However, I think this is ill advised. Have a look at the absolute numbers:

The largest subgroup has only 29 patients in it. These numbers are way too small to consider a guidelines change.

This paper shows that kids are just small adults when it comes to ED thoracotomy. And they seem to do even more poorly with no vital signs or penetrating injuries outside of the chest. So think carefully the next time you must consider this procedure in a child.

Reference: Nationwide Analysis of Resuscitative Thoracotomy in Pediatric Trauma Time to Differentiate from Adult Guidelines? J Trauma published ahead of print, July 6, 2020.

 

EAST 2018 #9: Occupational Exposure During ED Thoracotomy

ED thoracotomy is performed infrequently, under high stress circumstances, and with high stakes for the victim. Thus, it is a setup for mayhem. If not conducted properly, it can be noisy, disorganized, and dangerous due to the possibility of blood exposure. Unfortunately, we don’t know where these trauma patients have been. Previous data shows that the incidence of HIV, hepatitis, and other infectious agents is low but significant.

Occupational exposure of healthcare providers to these infectious agents via needlestick/cut, mucus membrane, open wound, or eyes can happen during any surgical procedure. But the possibility during the less controlled ED thoracotomy would seem to be greater. So the group at the University of Pennsylvania decided to perform a prospective, observational study at 16 trauma centers over a 2 year period. A total of 1360 participants were surveyed who were involved in 305 ED thoracotomies. They analyzed the data for risk of occupational exposure.

Here are the factoids:

  • Mechanism was 68% gunshot, 57% were undergoing prehospital CPR, and 37% arrived with signs of life
  • 22 exposures were documented, or a rate of 7% per thoracotomy and 1% per participant
  • There was no difference between Level I and II centers or hours worked at time of procedure
  • Those with exposures were typically trainees (68%) who sustained a percutaneous injury (86%) during the actual procedure (73%)
  • Full personal protective precautions were only utilized by 46% of exposed providers (!!)
  • Each additional piece of personal protective equipment reduced the risk of exposure by 32%

Bottom line: The authors concluded that the incidence of exposure to patient blood is the same as for other operative procedures. Hmm. They also state that the fear of occupational exposure should not deter providers from performing thoracotomy.

I certainly agree that one should always follow the accepted indications for performing ED thoracotomy. I’m not so sure about the comparison with non-emergent procedures, since the numbers are fairly low. However, of one thing there is no doubt: wear your personal protective equipment! You never know when you might be exposed!

Here are some questions for the authors to consider before their presentation:

  • What kind of power analysis did you do to ensure that you could draw reasonable comparisons between thoracotomy and non-emergent procedures?
  • Please provide detailed breakdown of how you sliced and diced your numbers in terms of type of provider, hours worked, trainee level, precautions taken, etc
  • I enjoyed this paper and look forward to hearing the details!

REBOA vs ED Thoracotomy: Which One Is Winning?

Many trauma centers are talking about REBOA (resuscitative endovascular balloon occlusion of the aorta), but only a few are actually doing it. And of those, only a handful are doing it regularly and closely studying how it’s working.

The RA Cowley Shock Trauma Center is one of those very few. They have integrated the preparation phase for REBOA (femoral art line insertion) into their initial resuscitation protocols. This allows them to actually perform the technique quickly in any patient who starts to go bad and meets criteria. This center has been using REBOA nearly exclusively since they began studying it  a few years ago. They have actually supplanted ED thoracotomy (EDT) with this technique, and are a leader in producing data and studies on its nuances.

They compared short term outcomes in patients suffering traumatic arrest undergoing REBOA  (2013-2015) to those in patients with EDT (2008-2013). This was a simple study, with easy to understand statistical analyses.

Here are the factoids:

  • 19 thoracotomies and 17 REBOA were performed during the study periods (this shows how uncommon these procedures are, even at a busy center)
  • Average ISS was about the same (31 vs 26). Median GCS was 3 in both groups.
  • Return of spontaneous circulation (ROSC) occurred in 7 EDT and 9 REBOA
  • 13 EDT and 9 REBOA patients survived long enough to get to the OR
  • Mean systolic BP after occlusion was higher after REBOA (80 vs 46 torr)
  • There was only one survivor of the 36, and they received REBOA. This patient actually discharged home. (!)

Bottom line: Shock Trauma is a very busy center, and as you can see, even their REBOA numbers are low. This is why it is so critically important that all REBOA patients be part of a study. We really need to know how well it works, who it works best in, and what the downsides are. In this study, ROSC and survival to OR were statistically identical, but blood pressure was higher with REBOA compared to cross-clamping. Survival was also the same (abysmal), with one excellent outcome in the REBOA group.

The authors believe that REBOA and EDT are equivalent in terms of the variables they looked at. But remember, there are many other factors we need to look at, including things like resource utilization and healthcare worker safety. I strongly urge every center that is performing or considering REBOA to join a multi-center trial and/or report the the REBOA registry to hasten our understanding of this procedure.

Related posts:

Reference: Paradigm shift in hemorrhagic traumaic arrest: REBOA is at least as effective as resuscitative thoracotomy with aortic crossclamping. ACS Scientific Forum, trauma abstracts, 2016.