Tag Archives: complications

Surveillance For Splenic Pseudoaneurysm After Injury

When it comes to repeat CT scanning after splenic injury, there are believers and there are non-believers. In my experience, the majority of centers in the US are non-believers. However, there is a new paper in press that attempts to convince us that more should become believers.

I think the biggest lesson to be learned from this paper is that WE SHOULD READ THE ENTIRE PAPER before drawing conclusions. I have said this in the past and I will say it again. In this case, not only did I read the entire paper, but I had to dig deep into the references it cited as well.

Nonoperative management of splenic injuries has a very high success rate if done properly. Some papers claim this can be up to 93%, which parallels my experience. This success rate involves excluding unstable patients (they need to be in the operating room) and planned use of angioembolization in select patients. Over the years we have found that we need to do less and less in the management of solid organ injury patients:

  • No bedrest
  • No starvation (NPO status)
  • No serial blood draws
  • No repeat CT scan
  • Few limitations on activity after discharge

For an example of a practice guideline that demonstrates that less is more, use the download link at the end of this post.

But back to the question about repeat CT scanning before discharge. Why do we need to do this? The usual reason is that “we want to find delayed pseudoaneurysms.” And why is that important? “It might bleed!”

Really? Let’s look into that through the lens of this new paper by the group at the University of Cincinnati. They performed a retrospective study of their experience with patients who had sustained blunt splenic injury during a recent three-year period. They were interested in how many underwent splenectomy or splenorrhaphy, who had repeat CT imaging, who went to interventional radiology (IR) and when, and which ones were found to have pseudoaneurysms and what was done about it.

Here are the factoids:

  • There were 539 patients who met inclusion criteria, with an average ISS of 24
  • Of these, 46 died during their hospital stay (none from their splenic injury)
  • Focusing on the 248 patients with higher grade injuries (III-V), 125 (50%) underwent emergent or delayed splenectomy. Early vs late operation was not broken out, but this is a startlingly high number!
  • Of the higher grade injured patients who kept their spleens, 97% underwent repeat CT around day 5
  • Delayed pseudoaneurysms were detected in the following patients:
    • Grade III: 10 of 88 patients (11%). Then 8 of those 10 went to IR, and 5  of 10 had splenectomy!
    • Grade IV: 7 of 24 (29%).  Then 8 of the 7 (error in the paper?) went to IR and 3 of 7 had splenectomy!
    • Grade V: 2 of 5 (40%). Both of these patients went to IR and somehow kept their spleens.

The authors conclude that routine followup CT imaging identifies splenic pseudoaneurysms allowing for interventions to minimize delayed complications.

Bottom line: Whoa! There’s a lot going on here. My first observation is that this center does a lot of splenectomies! Of the 539 patients (all comers) who were included in the study, 129 (24%)  lost their spleens. If grade I-II injuries are excluded that percent rises to 50%!

Only eight splenectomies were performed after the repeat CT. This would imply that there were either a lot of unstable patients with splenic injury, the institutional indications for this procedure arbitrarily include grade, or there is a lot of variability in the decision to perform it.

I think there are really two questions to answer here. 

  1. Does delayed splenic pseudoaneurysm occur? The answer is yes. There are a few studies (performed by believers) that demonstrate new pseudoaneurysms after repeat CT. I’m convinced.
  2. Do we care? The real question is, do these pseudoaneurysms cause harm? The fear is that they might explode at some point after patient discharge and cause a major problem.

Papers written by the believers cite a number of old studies and give numbers between 2% and 27% for incidence of delayed hemorrhage. Well, I tracked down all of these papers, including the ones they cited. And it doesn’t add up.

  • One paper from a believer institution found no delayed bleeds.
  • Several papers were for pediatric patients, whose spleens don’t behave like adult ones. They found one case after discharge in one out of 276 patients across three studies.
  • Of 76 adolescents, none encountered delayed bleeds

Many of the papers cited regarding bleeding complications are very old. CT scanners had less resolution, and in many papers, IR was not even a consideration. 

So here’s my take. Yes, delayed pseudoaneurysms occur. In children we don’t care. They almost never cause a problem. But in adults, they can and do cause issues and should be embolized shortly after the initial scan. 

Once embolized, the ones seen on that initial scan are effectively neutralized and do not need a repeat scan. The small ones that might pop up later may very well be part of the healing process. And they may not even occur if angioembolization is done early. It seems unlikely that anything further is needed.

But remember, clinical judgement trumps all. If your patient starts complaining of new abdominal symptoms while in the hospital or after discharge, get a prompt CT scan to rule out any developing complications.

Sample solid organ injury protocol: click here

Reference: Delayed splenic pseudoaneurysm identification with surveillance imaging. J Trauma Acute Care Surg. 2022 Mar 22. doi: 10.1097/TA.0000000000003615. Epub ahead of print. PMID: 35319540.

 

The Second Head CT In Patients Taking DOACs

Direct oral anticoagulant drugs (DOACs) are here to stay. When they were first released, I was very concerned with our inability to reverse them. I feared that we would have a rash of our elders presenting with severe head bleeds that we could do nothing about.

Well, that has not materialized. In fact, it appears that the probability of serious bleeding is more likely with our old reversible workhorse drug, warfarin.

But we are still spooked by DOACs. Nearly every center that has a practice guideline for managing patients with TBI on blood thinners includes a repeat CT scan after a given time interval. This is typically 6, 12, or even 24 hours.

Given the evolving safety profile of DOACs, is this even necessary? The surgical group at the Henry Ford Wyandotte Hospital in Michigan performed a retrospective registry review for their Level III trauma center. They reviewed the data for all adult patients who had suspected or confirmed blunt head trauma (any mechanism), were taking a DOAC, and received at least one CT scan.

Here are the factoids:

  • There were 400 patients with 498 encounters (yes, 15% came back with another TBI)
  • Patients were elderly (mean age 76) and nearly evenly split by sex
  • Fall was the most common mechanism (97%)
  • The first scan was negative in 96% of patients;12% of them did not have a repeat scan
  • Of the 420 patients who had a second scan, 418 were negative (99.5%). The two with positive scans were discharged uneventfully.
  • There were no differences based on specific DOAC, presenting GCS or mechanism

Bottom line: This is a relatively small, single institution study. However, it does appear that the authors have a large population of elderly patients suffering falls. This paper suggests that, indeed, a second scan may not be necessary. This parallels data from my own hospital. But to be on the safe side, keep an eye out for bigger, multi-institutional studies to be sure.

Reference: The utility of a second head CT scan af-ter a negative initial CT scan in head trauma patients on new direct oral anticoagulants (DOACs). Injury, article in press, June 13, 2021.

Activity Guidelines After Solid Organ Injury: How Important Are They?

Just about every practice guideline out there regarding liver and spleen injury has some type of physical activity guidelines associated with it. The accepted dogma is that moving around too much, or climbing stairs, or lifting objects, or getting tackled while playing rugby could exacerbate the injury and lead to complications or surgery.

But is it true? Activity restrictions after solid organ injury have been around longer than I have been a trauma surgeon. And the more people I poll on what they do, the more and very different answers I get. And there are no decent papers published that look critically at this question. Until now. 

A pediatric multi-center study of study on adherence to activity restrictions was published last year. Ten Level I pediatric trauma centers in the US tabulated their experience with solid organ injuries over a 3.75 year period fro 2013 to 2016. Only patients with successful nonoperative management of their injury were included, and those with high grade renal or pancreatic injuries were excluded.

Since this was a pediatric study, the American Pediatric Surgical Association (APSA) practice guideline was followed (activity restriction = organ injury grade + 2 weeks). Activity restrictions included all sports, any recreational activity with wheels, or any activity that involved having both feet off the ground. Patients with Grade III-V injuries were seen at an office visit after 2 weeks, and lower grade injuries had a phone followup.

Adherence to guidelines was assessed by a followup phone call two months after injury. Clinical outcomes assessed at 60 days included unplanned return to the emergency department (ED), re-admission, complications, and development of new bleeding confirmed by surgery, ultrasound, or computed tomography (CT) at 60 days post injury.

Here are the factoids:

  • Of the 1007 patients in the study, some 56% were either excluded (178) or lost to followup (463)
  • Of the remaining 366, roughly 46% had a liver injury, 44% spleen, and the remaining 10% had both
  • Median age was 10, so this was actually a younger population
  • 76% of patients claimed they abided by the guidelines, 14% said they did not, and 10% “didn’t know.” This means they probably did not.
  • For the 279 patients who said they adhered to activity restrictions 13% returned to the ED and half were admitted to the hospital
  • Of the 49 patients who admitted they did not follow the guidelines, 8% returned to the ED at some point and none were readmitted
  • The most common reasons for return to ED were abdominal pain, anorexia, fatigue, dizziness, and shoulder pain
  • There were no delayed operations in either of the groups

Bottom line: There were no significant differences between the compliant and noncompliant groups. Unfortunately, the authors did not include an analysis of the “I don’t know if I complied” group, which would have been interesting. But there is one issue I always worry about in these low-number-of-subjects studies that don’t show a significant difference between groups. Did they have the statistical power to show such a difference? If not, then we still don’t know the answer. And unfortunately, I’m not able to guess the numbers well enough to do the power calculation for this study.

I am still intrigued by this study! Our group originally had a fixed time period (6 weeks) of limited activity in our practice guideline for pediatric solid organ injury patients. This was rescinded last year based on our experience of no delayed complications and guidance from our sister pediatric trauma center at Children’s Hospital in Minneapolis. We are also moving toward making a similar change on our adult practice guideline.

Too many centers wait too long to make changes in their practice guidelines. They bide their time waiting for new, published research that they can lean on for their changes. Unfortunately, I think they will be waiting for a long time because many of our questions are not interesting enough for acceptance by the usual journals. Rely on the expertise and experience of your colleagues and then make those changes. Be sure to follow with your performance improvement program to make sure that they actually do work as well as you think!

Reference: Adherence to APSA activity restriction guidelines and 60-day clinical outcomes for pediatric blunt liver and splenic injuries (BLSI). J Ped Surg 54:335-339, 2019.

Air Embolism From an Intraosseous (IO) Line

Intraosseous (IO) lines are a godsend when we are faced with a patient who desperately needs access but has no veins. The tibia is generally easy to locate and the landmarks for insertion are straightforward. They are so easy to insert and use, we sometimes “set it and forget it”, in the words of infomercial guru Ron Popeil.

But complications are possible. The most common is an insertion “miss”, where the fluid then infuses into the knee joint or soft tissues of the leg. Problems can also arise when the tibia is fractured, leading to leakage into the soft tissues. Infection is extremely rare.

This photo shows the inferior vena cava of a patient with bilateral IO line insertions (black bubble at the top of the round IVC).

During transport, one line was inadvertently disconnected and probably entrained some air. There was no adverse clinical effect, but if the problem is not recognized and the line is not closed properly, there could be.

Bottom line: Treat an IO line as carefully as you would a regular IV. You can give anything through it that can be given via a regular IV: crystalloid, blood, drugs. And even air, so be careful!

AAST 2019 #6: DOACs Part 3!

A little further down the direct oral anticoagulants (DOACs) rabbit hole please? The abstract reviewed in my last post suggested that elderly patients taking these agents actually do better than those on warfarin. So if that’s the case, do we need to be so attentive to getting followup CT scans on these patients to ensure that nothing new and unexpected is happening?

The trauma group at UCSF – East Bay performed a multi-center review of the experience at “multiple” Level I trauma centers over a three year period. They included anticoagulated patients with blunt trauma who had a negative initial head CT. Patients taking only an anti-platelet agent or a non-oral anticoagulant were excluded.  They analyzed the data for new, delayed intracranial hemorrhage, use of reversal agents, neurosurgical intervention, readmission, and death.

Here are the factoids:

  • A total of 739 records were studied: 409 on warfarin and 330 on a DOAC. Average age was 79, and half were male.
  • Repeat head CT was performed only half the time (!)
  • Delayed hemorrhage was noted in 4% of warfarin cases (9 of 224) and 2.5% of DOAC cases (4 of 159)
  • There were no interventions or deaths in the DOAC group with followup CT, or in those who did not have the repeat scan
  • There was 1 intervention in the warfarin group and two deaths attributed to TBI
  • Reversal agents were administered to 2% of DOAC patients and 14% of warfarin patients
  • The authors performed a regression analysis that showed the two strong associations with delayed hemorrhage were male sex and AIS head > 2 (!)

The authors concluded that this “largest study” suggests that DOACs “may” have a better safety profile compared to warfarin and repeat head CT is not indicated.

Now, hold on a minute!

Rule #1: No single published paper should ever change your practice. They need to be confirmed by other, hopefully better work.

Rule #2: No single abstract should make you even think about changing your practice! These are preliminary works that always need more detail, more effort, and a lot more thought. They are meant to telegraph what the authors are working on and to raise interesting questions from the audience. They should stimulate others to try to replicate and improve upon the work. In general, if something looks really good as an abstract, the next step is successful publication. This means that peers have reviewed the data and agree that it looks promising. But then it should take several years of work by the original authors and others to prove or refute the claims.

This study was small in the first place, and became smaller because half did not have repeat CT scans. The only statistically significant result was that we confirmed that the providers were not very good about getting followup scans. Just because they didn’t do it doesn’t mean it’s not indicated, especially given the nature of the data and the very small numbers.

I consider this another very small piece in the puzzle that suggests DOACs are not as evil as warfarin. There are several of these low power studies floating around right now. But we need to hunker down and really do a big study right so we can start to get a clearer picture of what we should do. For now, it’s best to treat all anticoagulants and anti-platelet agents as evil and err on the side of overtreating.

Here are my comments and questions for the presenter and authors:

  • Why was the followup head CT rate so poor? Was this a “however they like to do it” thing, was there a protocol, did the trauma centers just not believe that DOACs could be bad?
  • What were the guidelines for reversal? If the initial head CT was normal, why ever reverse? This suggests that participating centers could do whatever they wanted based on unspecified criteria.
  • Was the regression analysis helpful in any way? Being male and having a mild TBI seem rather nonspecific factors and wouldn’t help select patients for reversal or repeat scan.
  • Please provide more information on the warfarin intervention and deaths.
  • Isn’t the title of this abstract rather bold for the quality of the results presented?

I’m sure there will be some lively debate at the end of this presentation!

Reference: Repeat CT head scan is not indicated in trauma patients taking novel anticoagulation: a multi-institutional study. AAST 2019, Oral Abstract #66.