Category Archives: Thorax

Practice Guideline: Chest Tube Management (Part 1)

Management of chest tubes is one of those clinical situations that are just perfect for practice guideline development: commonly encountered, with lots of variability between trauma professionals. There are lots of potential areas for variation:

  • How long should the tube stay in?
  • What criteria should be used to determine when to pull it?
  • Water seal or no?
  • When should followup x-rays be done?

Every one of these questions will have a very real impact on that patient’s length of stay and potential for complications.

We developed a chest tube clinical practice guideline (CPG) at Regions Hospital way back in 2004! Of course, there was little literature available to guide us in answering the questions listed above. So we had to use the clinical experience and judgment of the trauma faculty to settle on a protocol that all were comfortable with.

Ultimately, we answered the questions like this:

  • The tube stays in until three specific criteria are met
  • The criteria are: <150 cc drainage over 3 shifts, no air leak, and no residual pneumothorax (or at least a small, stable one)
  • Use of water seal is predicated on whether there was ever an air leak
  • An x-ray is obtained to determine whether any significant pneumo- or hemothorax is present prior to pulling the tube, and 6 hours after pulling it

This CPG has been in effect for over 15 years with excellent results and dramatically shortened lengths of stay.  However, as with any good practice guideline, it needs occasional updates to stay abreast of new research literature or clinical experiences. We recognized that occasional patients had excessive drainage for an extended period of time. This led us to limit the length of time the tube was in to seven days. And we also noted that a few patients had visible hemothorax on their pre-pull imaging. These patients were very likely to return with clinical symptoms of lung entrapment, so we added a decision point to consider VATS at the end of the protocol.

I’ll share the full protocol tomorrow and provide a downloadable copy that you can modify for your own center. I’ll also give a little more commentary on the rationale for the key decision points in this CPG.

Related posts:

Tension Pneumothorax From Inside The Chest: The Video

This video shows what it looks like from the inside when a needle thoracostomy is inserted into the chest. Note that it takes about a minute for the lung to expand, so be patient when you insert the needle. You can also get an idea of why the needle is only a temporary measure as the inflating lung begins to kink the catheter.

Don’t ask why there was a thoracoscope in the chest with a tension pneumo in the first place, though!

YouTube player

Detecting Rib Fractures In The Elderly

It’s well known that our elders do less well than younger folks after injury. The number of complications is higher, there tends to be more loss of independence during recovery, and mortality is increased. This is not only true of high energy trauma like car crashes, but also much lower energy events such as a fall from standing.

Rib fractures are common after falls in the elderly and contribute to significant morbidity if not treated adequately. Traditionally, they are identified through a combination of physical exam and chest x-ray. Unfortunately, only half of rib fractures are visible on x-ray. It falls to the physical exam to detect the rest.

A group at Beth Israel Hospital in Boston explored the utility of using chest CT in an attempt to determine if this would result in more appropriate and cost-efficient care in the elderly. They performed a retrospective study of 3 years of their own data on patients aged 65 or more presenting after a mechanical fall and receiving a rib fracture diagnosis. Imaging was ordered at the discretion of the physician. A total of 330 patients were elderly, fell, and had both chest x-ray and chest CT obtained. This was a very elderly group, with a mean age of 84 years!

Here are the factoids:

  • Rib fractures were seen on chest x-ray in 40 patients (12%) and on CT in an additional 56 ; 234 patients had no fractures on either
  • When fractures were seen on both studies, CT identified a median of 2 more fractures than chest x-ray
  • Patients with fractures not seen on chest x-ray were admitted significantly more often than those without fractures (91% vs 78%)
  • Mortality, admission to ICU, ICU length of stay, and hospital length of stay were not different if fractures were seen only on CT
  • CT scan identified new issues or clarified diagnoses suggested by chest x-ray in 14 cases, including one malignancy
  • Rib detail images were obtained in 13 patients and proved to be better than chest x-ray, but not quite as good as CT scan

Conclusion: use of CT for rib fracture diagnosis resulted in a few more admissions, but no change in hospital resource utilization, complications, or mortality.

Bottom line: Hmm…, read the paper closely. The authors conclude that more patients with CT-only identified rib fractures are admitted. But compared to what? Unfortunately, patients without rib fractures on CT. What about comparing to patients who had fractures seen on chest x-ray too? If that number is the same, then of what additional use is CT? Identifying a few incidentalomas?

Given that there is no change in the usual outcome measures listed here, it doesn’t seem like there is any additional benefit to adding CT. And I can see a lot of downsides: cost, radiation, and possible exposure to IV contrast. In my mind, there is still nothing that beats a good physical exam and a chest x-ray. Skip the CT scan. And don’t even think about ordering rib detail images! That’s so 1990s. And even if no rib fractures are seen on imaging, physical exam is the prime determinant for admitting your patient for aggressive pain management and pulmonary toilet.

Reference: Chest CT imaging utility for radiographically occult rib fractures in elderly fall-injured patients. J Trauma ePub ahead of print, Jan 23, 2019.

Best of AAST #6: Antibiotics For Chest Tubes??

For as long as I can remember (nearly 50 years worth of literature) there has been some debate about giving antibiotics after chest tube insertion to decrease the infection rate. The pendulum moved back and forth for decades, never getting very far into the “give antibiotics” side. It’s been quite a while since I remember any new papers on this, and I thought the debate had been resolved in favor of never using them.

But then I see an abstract from the AAST multi-institutional trials group studying presumptive antibiotics after chest tube insertion! They conducted a prospective, observational study at 22 Level I trauma centers, enrolling nearly 2,000 patients. They matched patients in antibiotic and no antibiotic groups, arriving at (only) 272 patients in each group.

Here are the results:

Bottom line: First, it’s a little disappointing that the numbers were so low with a trial that includes 22 trauma centers. Did they have a hard time finding centers that would give antibiotics? Or was it just hard to match patients for the variables they were looking at? Regardless, there were no significant differences in infectious complications, and a non-clinically significant difference in ICU stay with antibiotics.

Why won’t this die? If there are so few papers that show an actual benefit from giving antibiotics after chest tube insertion with 50 years of data, then it’s very unlikely that it will ever be shown to be necessary!

Reference: Presumptive antibiotics for tube thoracostomy for traumatic pneumothorax. Session XXII Paper 49, AAST 2018.