All posts by The Trauma Pro

Adding A Hospitalist To The Trauma Service

Hospitals are increasingly relying on a hospitalist model to deliver care to inpatients on medical services. These medical generalists are usually trained in general internal medicine, family medicine, or pediatrics and provide general hospital-based care. Specialists, both medical and surgical, may be consulted when needed.

In most higher level trauma centers in the US (I and II), major trauma patients are admitted to a surgical service (Trauma), and other nonsurgical specialists are consulted based on the needs of the patients and the competencies of the surgeons managing the patients. As our population ages, more and more elderly patients are admitted for traumatic injury, with more and more complex medical comorbidities.

Is there a benefit to adding medical expertise to the trauma service? A few studies have now looked at this, and I will review them over the next few days. The Level I trauma center at Christiana Care in Wilmington, Delaware embedded a trauma hospitalist (THOSP) in the trauma service. They participated in the care of trauma patients with coronary artery disease, CHF, arrhythmias, chronic diseases of the lung or kidneys, stroke, diabetes, or those taking anticoagulants.

The THOSP was consulted on appropriate patients upon admission, or during admission if one of the conditions was discovered later. They attended morning and afternoon sign-outs, and weekly multidisciplinary rounds. A total of 566 patients with hospitalist involvement were matched to controls, and ultimately 469 patients were studied.

Here are the factoids:

  • Addition of the THOSP resulted in a 1 day increase in hospital length of stay
  • Trauma readmissions decreased significantly from 2.4% to 0.6%
  • The number of upgrades to ICU status doubled, but ICU LOS remained the same
  • Mortality decreased significantly from 2.9% to 0.4%
  • The incidence of renal failure decreased significantly
  • Non-significant decreases in cardiovascular events, DVT/PE and sepsis were also noted
  • There was no difference in the number of medical specialty consults placed (cardiology, endocrinology, neurology, nephrology)

Bottom line: This paper shows some positive impact, along with some puzzling mixed results. The decrease in mortality and many complications is very positive. Was the increase in ICU transfers due to a different care philosophy in medical vs surgical personnel? And the failure to decrease the number of specialty consults was very disappointing to me. I would expect that having additional medical expertise on the team should make a difference there.

Was the THOSP really “embedded” if they were not involved in the regular daily rounds? In this case, they were present only for handoffs and for weekly multidisciplinary rounds. I believe that having them on the rounding team daily would be of huge benefit, allowing the surgeons and hospitalists to learn from each other. Plus, there should be a benefit to the residents in a Level I center, helping them broaden their ability to care for these complicated patients.

Reference: Embedding a trauma hospitalist in the trauma service reduces mortality and 30-day trauma-related readmissions. J Trauma 81(1):178-183, 2016.

Giving Vitamin D After Fracture

The role of Vitamin D in fracture healing is well known. So, of course, trauma professionals have tried to promote Vitamin D

supplementation to counteract the effects of osteoporosis. A meta-analysis of of 12 papers on the topic relating to hip and other non-vertebral fractures showed that there was roughly a 25% risk reduction for any non-vertebral fractures in patients taking 700-800 U of Vitamin D supplements daily.

Sounds good. So what about taking Vitamin D after a fracture occurs? Seems like it should promote healing, right? A very recent meta-analysis that is awaiting publication looked at this very question.

Unfortunately, there was a tremendous variability in the interventions, outcomes, and measures of variance. All the authors could do was summarize individual papers, and a true meta-analysis could not be performed.

Here are the factoids:

  •  81 papers made the cut for final review
  • A whopping 70% of the population with fractures had low Vitamin D levels
  • Vitamin D supplementation in hospital and after discharge did increase serum levels
  • Only one study, a meeting abstract which has still not seen the light of day in a journal, suggested a trend toward less malunions following a single loading dose of Vitamin D

Bottom line: Vitamin D is a great idea for people who are known to have, or are at risk for, osteoporosis and fractures. It definitely toughens up the bones and lowers the risk of fracture. However, the utility of giving it after a fall has not been shown. Of the 81 papers reviewed, none showed a significant impact on fracture healing. The only good thing is that Vitamin D supplements are cheap. Giving them may make us think that we are helping our patient heal, but it’s not. 

References:  

  • What is the role of vitamin D supplementation in acute fracture patients? A systematic review and meta-analysis of the prevalence of hypovitaminosis D and supplementation efficacy. J Orthopaedic Trauma epub Sep 22 2015.
  • Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293(18):2257-2264, 2005.

APSA Activity Restrictions After Solid Organ Injury: Aren’t We Done With That Yet?

Nearly 20 years ago, the American Pediatric Surgical Association (APSA) published a clinical guideline for management of solid organ injury in children. Part of the guideline included activity restrictions, specifically for a period of time after injury. This was generalized by many clinicians to include a period of in-hospital bed rest.

A paper has just been published that examines the usefulness of restricting activity in pediatric patients with solid organ injury. It was authored by a consortium of 10 Level I pediatric trauma centers, and included all patients through age 18 who did not have a concomitant significant renal injury and no pancreatic injury. All injuries were diagnosed by CT scan over a 33 month period.

Activity restrictions were given to all patients upon discharge, which limited sports, wheeled recreational activities, and anything else requiring two feet off the ground. A phone survey was conducted 60 days post-discharge to judge compliance. Unplanned return to ED, readmission, and complications were also assessed.

Here are the factoids:

  • A total of 1007 patients were studied, and 99 were excluded due to concomitant pancreatic or high grade renal injury. An additional 79 were excluded due to missing injury grade or operative management.
  • Of the remaining patients, only 366 were available for 60-day followup
  • 279 claimed to adhere to activity restrictions; 13% returned to the ED and 6% were readmitted.
  • 49 admitted that they did not pay attention to the restrictions, and only 4 (8%) returned to the ED. None were hospitalized.
  • Even in the high-grade injury patients, there was no difference between compliant or noncompliant groups
  • No patient in either group bled post-discharge

Bottom line: Due to the nature of this study (specifically the phone survey component), there will be degradation of the data. Some patients do not want to admit that they didn’t follow the doctor’s orders. In theory, this could increase the number of complications / returns to ED in the “compliant” group. But it did not. 

The other issue I have with this study is that it was not stratified by age. The spleen of an 18 year old is very different than that of a 6 year old. Sixty years ago, we used to take spleens out in adults with a diagnosed injury. The reason we moved toward nonoperative management in adults was the very favorable experience we had in children. Unfortunately, nowhere in this paper is age broken out. Typically, the number of older children (who are really adults) with the injury far outnumber the younger ones, which also tends to increase the number of complications seen. But once again, we did not. Small numbers? Possibly. 

So what are we to make of all this? Basically, it tells us that we’ve been trying to restrict activity in our patients with liver and spleen injury for no good reason. And this applies especially to the children. Look at your own clinical experience, and try to recount how many “failures” you’ve seen due to failure to follow activity restrictions. More typically, failures are due to undiagnosed or untreated pseudoaneurysms. 

It’s time to rethink your solid organ management protocol, if you haven’t already. Do you really need a period of NPO status? Or bedrest? Or activity restriction? And have you ever tried to restrict activity in a 6-year old? Have a look at the guideline we’ve used at my hospital for nearly 20 years! We got rid of the NPO and bedrest restrictions a while ago. Now it’s time to start reducing the activity restrictions!

References:

  • Evidence-Based Guidelines for Resource Utilization in Children With
    Isolated Spleen or Liver Injury. J Ped Surg 35(2):164-169, 2000.
  • Adherence to APSA activity restriction guidelines and 60-day clinical outcomes for pediatric blunt liver and splenic injuries (BLSI). J Ped Surg in Press, 2018.

Stab To The Abdomen: The WTA Algorithm

I’ve spent the last week discussing the hypothetical case of a young patient with a stab to the abdomen. I worked through some of the thought processes regarding physical exam, imaging, and choices for management. Fortuitously, it would seem, The Journal of Trauma published an algorithm on this very topic from the Western Trauma Association (WTA).

The WTA Algorithm Committee reviewed existing data to start the process of developing this algorithm. As could be expected, very little high quality data was available. So the final algorithm is a synthesis of existing lesser quality studies, expert opinion from the committee members, and commentary from the membership.

Here are some of the highlights:

  • Unstable patients go straight to the operating room (A)
  • Patients who cannot be examined (unconscious, head injured, intoxicated) should be evaluated for peritoneal penetration with local wound exploration, ultrasound, CT, or laparoscopy. If positive or equivocal, proceed to exploration. (B)
  • Patients who can be examined should be managed by location of the stab. Flank injuries are lower risk and should be scanned. Anterior stabs can be evaluated using observation, local would exploration, or CT scan,
  • Positive results generally proceed to laparotomy. The algorithm states that laparaoscopy “may be performed in select stable patients by a highly skilled surgeon experienced in minimally invasive surgical techniques.”

As with any algorithm or practice guideline, nothing is etched in stone. These tools are good for about 90% of the clinical situations you will encounter. If you end up off the beaten path, you will need to use your best judgment to provide best treatment for your patient. Just remember to document your rationale, because you may very well have to justify it to your peers.

Click the diagram below to see a full size version.

Reference: Evaluation and management of abdominal stab wounds:
A Western Trauma Association critical decisions algorithm. J Trauma 85(5):1007-1015, 2018.

What Would You Do? A Teensy Weensy Stab To The Abdomen – Part 4

We’ve gotten the young man with the teensy weensy stab to the abdomen with a bit of omental evisceration to the operating room. Now what should we do? We’ve already decided that he needs an exploration because of the known penetration. How should we go about it?

There are two choices: diagnostic laparoscopy vs laparotomy. Which is better? Let’s talk about laparoscopy first. This tool has been around now for over 25 years. There has been variable acceptance for use in trauma during that time because it tends to take more time and may have a higher rate of missed injury. Both factors have major implications in patients who have active bleeding and small injuries, respectively.

On the plus side, a truly negative (nontherapeutic) exploration tends to be more benign, with rapid recovery, faster time to discharge, and potentially fewer complications when evaluated with a scope. But on the minus side, small injuries can be notoriously difficult to find. What does that small wisp of blood mean? This is not nearly as clear as the meaning of other colors (green, brown). The decision to open can be difficult, particularly for surgeons who perform a high number of laparoscopies in the non-trauma portion of their practice.

Trauma laparotomy is traditionally a large operation with a generous incision and meticulous exploration. This can lead to significant postop pain and morbidity, particularly when no significant pathology is found. Unfortunately, the literature appears to be quite polarized. The surgeon is either pro-laparoscopy, or pro-big incision, and tends to brace their preferred procedure almost exclusively.

But there is a middle ground, and that is what I would choose in a case like this. The surgeon must consider the likelihood of reliably finding the size of internal injury based on his or her assessment of the external wound, as well as the probability that the exploration would be non-therapeutic. So in this case, I would worry that a bowel injury could be only a few millimeters in size and might be missed using only the laparoscope. But I also think that there is a good chance there may not be an injury at all, so I would not be inclined to start with a huge incision.

My choice is to perform a “mini-laparotomy”, making an incision just large enough to explore all of the bowel and visualize the retroperitoneum. I can generally do this through an incision large enough to get my palm into the abdomen, about 6cm. I am confident that I can easily find all injuries, and make the incision larger if warranted. Postoperative pain is better, and discharge if no injuries were found can happen in 1-2 days.

Unfortunately, I can’t find any papers that examine this middle ground between laparoscopy and full laparotomy. But I’ll keep looking! How would you have managed this case? Comment or tweet, please!

In my next post, I’ll review the official algorithm for evaluating stabs to the abdomen recently published by the western Trauma Trauma Association.

References: 

  1. The role of laparoscopy in management of stable patients with
    penetrating abdominal trauma and organ evisceration. J Trauma 81(2):307-311, 2016.
  2. Diagnostic Laparoscopy for Trauma: How Not to Miss Injuries. J Laparoscopic Adv Surg Tech 28(5):506-513, 2018.