Why Is So Much Published Research So Bad?

I read lots of trauma-related articles every week. And as I browse through them, I often find studies that leave me wondering how they ever got published. And this is not a new phenomenon. Look at any journal a year ago. Five years ago. Twenty years ago. And even older. The research landscape is littered with their carcasses.

And on a related note, sit down with any serious clinical question in your field you want to answer. Do a deep dive with one of the major search engines and try to get an answer. Or better yet, let the professionals from the Cochrane Library or other organization do it for you. Invariably, you will find hints and pieces of the answer you seek. But never the completely usable solution you desire. 

Why is it so hard? Even with tens of thousands of articles being published every year?

Because there is no overarching plan! Individuals are forced to produce research as a condition of their employment. Or to assure career advancement. Or to get into medical school, or a “good” residency. And in the US, Level I trauma centers are required to publish at least 20 papers every three years to maintain their status. So there is tremendous pressure across all disciplines to publish something.

Unfortunately, that something is usually work that is easily conceived and quickly executed. A registry review, or some other type of retrospective study. They are easy to get approval for, take little time to complete and analyze, and have the potential to get published quickly.

But what this “publish or perish” mentality promotes is a random jumble of answers that we didn’t really need and can’t learn a thing from. There is no planning. There is no consideration of what questions we really need to answer. Just a random bunch of thoughts that are easy to get published but never get cited by anyone else.

Bottom line: How do we fix this? Not easily. Give every work a “quality score.” Instead of focusing on the quantity of publications, the “authorities” (tenure committees and the journal editors themselves) need to focus in on their quality. Extra credit should be given to multicenter trial involvement, prospective studies, and other higher quality projects. These will increase the quality score. The actual number of publications should not matter as much as how much high quality work is in progress. Judge the individual or center on their total quality score, not the absolute number of papers they produce. Sure, the sheer number of studies published will decline, but the quality will increase exponentially!

Are You Overusing Chest CT In Kids?

Many centers have developed guidelines for ordering various imaging studies, mostly in adults. These frequently dictate indications for head, cervical spine, and abdominal CT. The use of chest CT guidelines are far less common. And for the most part, such guidelines are significantly lacking for pediatric trauma evaluation.

Oregon Health Sciences University published a study detailing the use and utility of chest CT in pediatric patients, which they defined as age less than or equal to 18. They also looked at the impact of implementation of imaging guidelines for chest CT. They pooled data on blunt injuries from two Portland children’s hospitals. They collected a historical cohort over 8 years ending in 2015. One hospital had implemented region-specific imaging guidelines in 2010, and the impact of this was observed. They pooled data from both centers to identify mechanisms predictive of significant thoracic injury.

Here are the factoids:

  • Nearly 3000 patients were reviewed for thoracic CT use across the study period.
  • 1451 had chest x-ray only, 933 had chest CT only, and 567 had both
  • Although CT use in other body regions significantly declined across the study period, thoracic CT did not.
  • Chest CT changed management on only 17 of 1500 patients (1%).  There were 2 operations, 1 stent placement, 1 medical management, and 13 changes I consider rather weak (chest tube insertion, negative workup)
  • All clinically significant findings were predicted by an abnormal chest x-ray and motor vehicle mechanism

Bottom line: Chest CT continues to be overused in pediatric blunt trauma (and adults too!). This is especially unsettling due to it’s low yield and the unclear future danger of high dose radiation received during childhood. The major issue with this study is that it mixes adults and children and calls them all children. Specifically, most patients age 13-14 or above act anatomically and physiologically more like adults. It would have been nice to separate out the lower age group, but this typically results in very low numbers for analysis. In this case, it should have been possible because the median age was 13.

I recommend that all centers adopt some kind of blunt imaging guidelines to reduce clinician variability and unneeded radiation exposure. This is particularly true for children, since they are more sensitive to it and will live long enough to potentially experience the adverse effects from it. 

For both children and adults, chest CT should be reserved for evaluation of potential aortic injury, and nothing else. Rib fractures, hemothorax, and pneumothorax are best evaluated by traditional chest x-ray, and therapeutic decisions based on this alone. Abnormal chest x-ray findings, coupled with a high-energy mechanism (MVC, crush, pedestrian struck, and fall from a real height (3+ storys) should drive the decision to obtain a chest CT.

Related posts:

Reference: Limiting thoracic CT: a rule for use during initial pediatric trauma evaluation. J Ped Surg, In press, Aug 28, 2017.

Why Is NPO The Default Diet For Trauma Patients?

I’ve watched it happen for years. A trauma patient is admitted with a small subarachnoid hemorrhage in the evening. The residents put in all the “usual” orders and tuck them away for the night. I am the rounder the next day, and when I saunter into the patient’s room, this is what I find:

They were made NPO. And this isn’t just an issue for patients with a small head bleed. A grade II spleen. An orbital fracture. Cervical spine injury. The list goes on.

What do these injuries have to do with your GI tract?

Here are some pointers on writing the correct diet orders on your trauma patients:

  • Is there a plan to take them to the operating room within the next 8 hours or so? If not, let them eat. If you are not sure, contact the responsible service and ask. Once you have confirmed their OR status, write the appropriate order.
  • Have they just come out of the operating room from a laparotomy? Then yes, they will have an ileus and should be NPO.
  • Are they being admitted to the ICU? If their condition is tenuous enough that they need ICU level monitoring, then they actually do belong to that small group of patients that should be kept NPO.

But here’s the biggest offender. Most trauma professionals don’t think this one through, and reflexively write for the starvation diet.

  • Do they have a condition that will likely require an emergent operation in the very near future? This one is a judgment call. But how often have you seen a patient with subarachnoid hemorrhage have an emergent craniotomy? How often do low grade solid organ injuries fail if they’ve always had stable vital signs? Or even high grade injuries? The answer is, not often at all! So let them eat!

Bottom line: Unless your patient is known to be heading to the OR soon, or just had a laparotomy, the default trauma diet should be a regular diet! 

Making The Trauma Team Time Out Even Better!

Over the past two days, I’ve discussed a method for optimizing the hand-off process between prehospital providers and the trauma team. Besides improving the quality and completeness of information exchange, it also fosters a good relationship between the two. All too often, the medics feel that “the trauma team is not listening to me” if the procedure is to move the patient onto the ED bed as quickly as possible.

And they are right! As soon as the patient hits the table, the trauma team starts doing what they do so well. It’s impossible for humans to multi-task, even though they think they can (look at texting and driving). We switch contexts with our brain, from looking at the patient to listening to EMS, back and forth. And it takes a few extra seconds to switch from one to the other. Team members will not be able to concentrate on the potentially important details that are being relayed.

What should you do if the team doesn’t want to wait?

First, educate them. Except for those who are in extremis or arrest, the patient can wait on the EMS stretcher for 30 seconds. Nothing harmful is going to happen in that short period.

Then, create a hard stop. The easiest way to do this is to place a laminated copy of the timeout procedure on the ED bed. And the rule is that the card doesn’t move until the timeout is done. This is very similar to what happens in the OR. The process should take only 30 seconds, then it’s over and the team can start.

Here’s a copy of a sample TTA Timeout card:

Download a TTA timeout card

Modify it to suit your hospital and process, and try it out!

Thanks to the trauma team at Ridgeview Hospital in Waconia MN for telling me about this cool trick!

Prehospital To Trauma Team Handoff: A Solution

I wrote about handoffs between EMS and the trauma team yesterday. It’s a problem at many hospitals. So what to do?

Let’s learn from our experience in the OR. Best practice in the operating room mandates a specific time out process that involves everyone in the OR. Each participant in the operation has to stop, identify the patient, state what the proposed procedure and location is, verify that the site is marked properly, and that they have carried out their own specific responsibilities (e.g. infused the antibiotic).

image

Some trauma centers have initiated a similar process for their trauma team as well. Here’s how it works:

  • The patient is rolled into the resuscitation room by EMS personnel, but remains on the stretcher.
  • Any urgent cares continue, such as ventilation.
  • The trauma team leader is identified and the EMS lead gives a brief report while everyone in the room listens. The report consists of only mechanism, all identified injuries, vital signs (including pupils and GCS), any treatments provided. This should take no more than 30 seconds.
  • An opportunity for questions to be asked and answered is presented
  • The patient is moved onto the hospital bed and evaluation and treatment proceed as usual.
  • EMS personnel provide any additional information to the scribe, and may be available to answer any additional questions for a brief period of time.

Bottom line: This is an excellent way to improve the relationship between prehospital and trauma team while improving patient care. It should help increase the amount of clinically relevant information exchanged between care providers. Obviously, there will be certain cases where such a clean process is not possible (e.g. CPR in progress). I recommend that all trauma programs consider implementing this “Trauma Activation Time Out For EMS” concept.

Tomorrow, I’ll share a best practice to make this process even better!