Tag Archives: ct scan

Don’t Just Read The Abstract: CT Scanning The Unstable Patient

I’ve said it many times before: “don’t just read the abstract.” They can be misleading, and doing so makes it impossible to see the shortcomings of the research model and the veracity of the conclusions. Yet good trauma professionals do it all the time.

So I’ve selected a recent poster child to demonstrate this tenet. Let’s go over the study details:

This paper is a retrospective, registry review from Japan. The authors point out that one of the long-held rules is to avoid scanning unstable trauma patients in the “tunnel of death.” The authors cite a prior study that did not show an increase in mortality from this practice. So they decided to repeat/confirm it using 11 years of national registry data.

They included all patients who arrived at the trauma center with blood pressure < 90. Interestingly, they excluded patients in frank or near arrest. And finally, patients with critical data points missing were excluded. They used a regression method to control for covariates such as age, ISS, and vitals upon arrival.

Here are the factoids:

  • Out of nearly 200,000 patients, about 7,000 were initially eligible. About 1,000 were excluded by the criteria above or because they were treated at a low volume facility. Only 5,809 were included in the study and another 500 were excluded because of missing covariates.
  • The authors found that there were significantly fewer deaths in the group of unstable patients taken to CT (20 fewer per 100 patients) (!!!?)
  • However, when corrected for confounders, this significant difference went away completely
  • But the authors conclusion in the abstract was: “We suggest physicians should consider CT as one of the diagnostic options even when patients are unstable.”

Bottom line: What? The study went from showing that taking an unstable patient to CT was amazing for decreasing mortality, to no different after applying more statistical methods. And since there was no difference, why not just go?

Here’s why. In-hospital and 24 hour mortality are not good indicators of anything because there are so many patient and hospital factors involved. And because it was a registry study, there was no way of knowing if the patient was hypotensive at the time they were taken to CT. They could have had a low blood pressure and responded well to resuscitation. Or they could have been normotensive on arrival and became hypotensive before CT scan. There is no way to cleanly identify the correct study group without a prospective study, or a very painstaking retrospective one.

One of the most important aspects of this study is some background info that is not stated in the paper. Surgeon involvement in initial resuscitation in Japan is not nearly as integrated as it is in the US. So if the resuscitating physicians can’t do anything about the bleeding in the ED, why not just scan them while awaiting arrival of the surgeon? If the patient crashes, was it due to the scan, or a delay in getting to the OR?

So don’t just read the abstract. If it seems to be too good to be true, it is. Or at least self-serving. Read the nitty gritty details and decide for yourself!

Next week: more on unstable patients and the CT scanner

Reference: Computed tomography during initial management and mortality among hemodynamically unstable blunt trauma patients: a nationwide retrospective cohort study. Scand J Trauma 25(1):74, 2017.

The Pan-Scan For Trauma

Diagnostic imaging is a mainstay in diagnosing injuries in major trauma patients. But the big questions are, how much is enough and how much is too much? X-radiation is invisible but not innocuous. Trauma professionals tend to pay little attention to radiation that they can’t see in order to diagnose things they can’t otherwise see. And which may not even be there.

There are two major camps working in emergency departments: scan selectively vs scan everything. It all boils down to a balance between irradiating enough to be satisfied that nothing has been missed, and irradiating too much and causing harm later.

A very enlightening study was published last year from the group at the University of New South Wales. They prospectively looked at their experience while moving from selective scanning to pan-scanning.They studied over 600 patients in each cohort, looking at radiation exposure, missed injuries, and patient injury and discharge disposition variables.

Here are the factoids:

  • Absolute risk of receiving a higher radiation dose increased with pan-scanning from 12% to 20%. This translates to 1 extra person of every 13 evaluated receiving a higher dose.
  • The incidence of receiving >20 mSv radiation dose nearly doubled after pan-scanning. This is the threshold at which we believe that cancer risk changes from low (<1:1000) to moderate (>1:1000).
  • The risk of receiving >20 mSv was lower in less severely injured patients (sigh of relief)
  • There were 6 missed injuries with selective scanning and 4 with pan-scanning (not significant). All were relatively minor.

Bottom line: Granted, the study groups are relatively small, and the science behind radiation risk is not very exact. But this study is very provocative because it shows that radiation dose increases significantly when pan-scan is used, but there was no benefit in terms of decreased missed injury. If we look at the likelihood of being helped vs harmed, patients are 26 times more likely to be harmed in the long term as they are to be helped in the short term. The defensive medicine naysayers will always argue about “that one catastrophic case” that will be missed, but I’m concerned that we’re creating some problems for our patients in the distant future that we are not worrying enough about right now.

Related posts:

Reference: Comparison of radiation exposure of trauma patients from diagnostic radiology procedures before and after the introduction of a panscan protocol. Emerg Med Australasia 24(1):43-51, 2012.

Routine CT After Operative Exploration For Penetrating Trauma

CT scans are commonly used to aid the workup of patients with blunt trauma. They are occasionally useful in penetrating trauma, specifically when penetration into a body cavity is uncertain and the patient has no hard signs that would send him or her immediately to the operating room.

Is there any role in operative penetrating trauma, after the patient has already been to the OR? The dogma has always been that the eyeballs of the surgeon in the OR are better than any other imaging modality. Really?

The surgical group at San Francisco General addressed this question by retrospectively reviewing 6 years of their operative penetrating injury registry data. They were interested in finding how many occult injuries (seen with CT but not by the surgeon) were found on a postop CT. A total of 225 patients who underwent operative management of penetrating abdomen or chest injury were included.

Here are the factoids:

  • Only 110 patients had a postop CT scan; 73 had scans within the first 24 hours, the other 37 were scanned later
  • Rationale for early scan was to investigate retroperitoneal injury in half of patients, but frequently no indication was given (41%)
  • Rationale for late scan was for workup of ileus in one third, or for evaluation of new or unexpected clinical problems
  • Occult injuries were found in about half of early CT patients (52%), and 22% of late CT patients
  • The most common occult injuries were fractures, GU issues, regraded solid organ injury, and unrecognized vascular injuries
  • Several management changes occurred, including

Bottom line: There appears to be a significant benefit to sending some penetrating injury patients to CT in the early postop period. Specifically, those with injury to the retroperitoneum, deep into the liver, near the spine, or with multiple and complicated injuries would benefit. Simple stabs and gunshots that stay away from these areas/structures probably do not need followup imaging. 

Rreference: Routine computed tomography after recent operative exploration for penetrating trauma: What injuries do we miss? J Trauma, published ahead of print, May 11, 2017.

How To: Manage Extraperitoneal Bladder Rupture

Extraperitoneal bladder rupture is a relatively uncommon injury, but is easily managed in most cases. It is associated with a blunt mechanism, and concomitant fracture of the pubic rami or spreading of the symphysis pubis is nearly always present. In the old days, we used to think that the bladder injury was due to penetration anteriorly by bony fragments, but this is probably an old wives tale. It’s more likely due to hydraulic forces occurring within the bladder at the same time the pelvic ring is being deformed or spread apart by blunt forces.

If you obtain a pelvic x-ray during the initial trauma evaluation and see any fractures or diastasis around the symphysis, think bladder injury. Placement of a urinary catheter will typically drain plenty of urine, which will usually be grossly bloody.

Once the injury is suspected, the diagnostic test of choice is a CT cystogram. Don’t confuse this with the images seen when the bladder passively fills with contrast when the catheter is clamped. There is not enough pressure in the bladder to guarantee that contrast will leak out, so this type of study may be falsely negative.

True CT cystogram technique requires filling the bladder with at least 350cc of dilute contrast under pressure by hanging it on an IV pole, then clamping the catheter. Once the bladder is filled, the scan can proceed as usual. But after it is complete, a second limited scan through the pelvis must be performed after the contrast has been evacuated by unclamping the catheter. This allows visualization of small contrast leaks that might otherwise be masked by all the contrast in the bladder.

Here’s a nice sagittal image of an extraperitoneal injury from radiologypics.com:

Note how the contrast dissects around the bladder but does not enter the peritoneal cavity.

Extraperitoneal injuries usually do not require repair and will heal on their own. However, if the symphysis pubis needs instrumentation to restore anatomic position, concomitant repair of the bladder is frequently necessary to keep the hardware from being contaminated by urine.

Bottom line:

  • Suspect an extraperitoneal bladder injury in anyone with bony injuries involving the symphysis pubis.
  • Don’t order a urinalysis in trauma patients!
  • Use CT cystogram technique to make the diagnosis.
  • Treatment is simple: leave the urinary catheter in place for 10 days. No urology consult is needed.
  • Then repeat the CT cystogram to confirm healing, and remove the catheter.

Related posts:

EAST 2017 #2: CT Scan After Recent Operative Exploration for Penetrating Trauma

The general rule for penetrating trauma, especially gunshots to the abdomen, is that you don’t need to obtain a CT scan to help you decide to go to the OR. (Of course, there are a few exceptions.) And the corollary has always been that you don’t need to get a CT scan after you operate for penetrating trauma.

But the group at UCSF is questioning this. They retrospectively looked at 5 years of data on patients who underwent trauma laparotomy without preoperative imaging. They focused on new findings on CT that were not reported during the initial operation.

Here are the factoids:

  • 230 of 328 patients undergoing a trauma lap did not have preop imaging
  • 85 of the 230 patients (37%) underwent immediate postop CT scan. These patients tended to have a gunshot mechanism and higher injury severity score.
  • Unreported injuries were found in 45% (!) and tended to be GU and orthopedic in nature
  • 47% of those with unreported injuries found required some sort of intervention

Bottom line: This is a very interesting and potentially practice changing study. However, there is some opportunity for bias since only select patients underwent postop scanning. Nevertheless, one in five patients who did get a postop scan had an injury that required some sort of intervention. This study begs to be reworked to further support it, and to develop specific criteria for postop scanning.

Questions/comments for the authors/presenters:

  • Be sure to break down your results by gunshot vs stab. This will help formulate those criteria I mentioned above.
  • Specifically list the occult injuries and interventions required. In some studies, those “required interventions” are pretty weak (urology consult vs an actual procedure).
  • How exactly did the operating surgeons determine who to send to CT? Was it surgeon-specific (i.e. one surgeon always did, another never did)? Was it due to operative findings (hole near the kidney)? This is also needed when developing specific criteria for postop imaging.
  • Nice poster!

Click here to go the the EAST 2017 page to see comments on other abstracts.

Related posts:

Reference: Routine tomography after recent operative exploration for penetrating trauma: what injuries do we miss?  Poster #14, EAST 2017.