Tag Archives: trauma team

The Lead Gown Pull-Up: Part 2

Okay, so you’ve seen “other people” wearing perfectly good lead aprons lifting them up to their chin during portable x-rays in the trauma bay. Is that really necessary, or is it just an urban legend?

After hitting the medical radiation physics books (really light reading, I must say), I’ve finally got an answer. Let’s say that the xray is taken in the “usual fashion”:

  • Tube is approximately 5 feet above the xray plate
  • Typical chest settings of 85kVp, 2mAs, 3mm Al filtration
  • Xray plate is 35x43cm

The calculated exposure to the patient is 52 microGrays. Most of the radiation goes through the patient onto the plate. A very small amount reflects off their bones and the table itself. This is the scatter we worry about.

So let’s assume that the closest person to the patient is 3 feet away. Remember that radiation intensity diminishes as the square of the distance. So if the distance doubles, the intensity decreases to one fourth. By calculating the intensity of the small amount of scatter at 3 feet from the patient, we come up with a whopping 0.2 microGrays. Since most people are even further away, the dose is much, much less for them.

Let’s put it perspective now. The background radiation we are exposed to every day (from cosmic rays, brick buildings, etc) amounts to about 2400 microGrays per year. So 0.2 microGrays from chest x-ray scatter is less than the radiation we are exposed to naturally every hour!

The bottom line: unless you need to work out you shoulders and pecs, you probably don’t bother to lift your lead apron every time the portable x-ray unit beeps. It’s a waste of time and effort! Just stand back and enjoy!

Making The Trauma Team Time Out Even Better!

Over the past two days, I’ve discussed a method for optimizing the hand-off process between prehospital providers and the trauma team. Besides improving the quality and completeness of information exchange, it also fosters a good relationship between the two. All too often, the medics feel that “the trauma team is not listening to me” if the procedure is to move the patient onto the ED bed as quickly as possible.

And they are right! As soon as the patient hits the table, the trauma team starts doing what they do so well. It’s impossible for humans to multi-task, even though they think they can (look at texting and driving). We switch contexts with our brain, from looking at the patient to listening to EMS, back and forth. And it takes a few extra seconds to switch from one to the other. Team members will not be able to concentrate on the potentially important details that are being relayed.

What should you do if the team doesn’t want to wait?

First, educate them. Except for those who are in extremis or arrest, the patient can wait on the EMS stretcher for 30 seconds. Nothing harmful is going to happen in that short period.

Then, create a hard stop. The easiest way to do this is to place a laminated copy of the timeout procedure on the ED bed. And the rule is that the card doesn’t move until the timeout is done. This is very similar to what happens in the OR. The process should take only 30 seconds, then it’s over and the team can start.

Here’s a copy of a sample TTA Timeout card:

Download a TTA timeout card

Modify it to suit your hospital and process, and try it out!

Related posts:

Thanks to the trauma team at Ridgeview Hospital in Waconia MN for telling me about this cool trick!

Prehospital To Trauma Team Handoff: A Solution

I wrote about handoffs between EMS and the trauma team yesterday. It’s a problem at many hospitals. So what to do?

Let’s learn from our experience in the OR. Best practice in the operating room mandates a specific time out process that involves everyone in the OR. Each participant in the operation has to stop, identify the patient, state what the proposed procedure and location is, verify that the site is marked properly, and that they have carried out their own specific responsibilities (e.g. infused the antibiotic).

Some trauma centers have initiated a similar process for their trauma team as well. Here’s how it works:

  • The patient is rolled into the resuscitation room by EMS personnel, but remains on the stretcher.
  • Any urgent cares continue, such as ventilation.
  • The trauma team leader is identified and the EMS lead gives a brief report while everyone in the room listens. The report consists of only mechanism, all identified injuries, vital signs (including pupils and GCS), any treatments provided. This should take no more than 30 seconds.
  • An opportunity for questions to be asked and answered is presented
  • The patient is moved onto the hospital bed and evaluation and treatment proceed as usual.
  • EMS personnel provide any additional information to the scribe, and may be available to answer any additional questions for a brief period of time.

Bottom line: This is an excellent way to improve the relationship between prehospital and trauma team while improving patient care. It should help increase the amount of clinically relevant information exchanged between care providers. Obviously, there will be certain cases where such a clean process is not possible (e.g. CPR in progress). I recommend that all trauma programs consider implementing this “Trauma Activation Time Out For EMS” concept.

Tomorrow, I’ll share a best practice to make this process even better!

Related posts:

image

The EMS Handoff: Opportunity for Improvement

Handoffs occur in trauma care all the time. EMS hands the patient off to the trauma team. ED physicians hand off to each other at end of shift. They also hand off patients to the inpatient trauma service. Residents on the trauma service hand off to other residents at the end of their call shift. Attending surgeons hand off to each other as they change service or a call night ends. The same process also occurs with many of the other disciplines involved in patient care as well.

Every one of these handoffs is a potential problem. Our business is incredibly complicated, and given that dozens of details on dozens of patients need to be passed on, the opportunity for error is always present. And the fact that resident work hours are becoming more and more limited increases the need for handoffs and the number of potential errors.

Today, I’ll look at information transfer at the first handoff point, EMS to trauma team. Some literature has suggested that there are 16 specific prehospital data points that affect patient outcome and must be included in the EMS report. How good are we at making sure this happens?

An observational study was carried out at a US Level I trauma center with video recording capabilities in the resuscitation room. Video was reviewed to document the “transmission” part of the EMS report. Trauma chart documentation was also reviewed to see if the “reception” half of the process by the trauma team occurred as well.

A total of 96 handoffs were reviewed over a one year period. The maximum number of elements in the study was 1536 (96 patients x 16 data elements). The total number “transmitted” was 473, but only 329 of those were “received.” This is not quite as bad as it seems, since 483 points were judged as not applicable by the reviewers. However, this left 580 that were applicable but were not mentioned by EMS. Of the 16 key elements, the median number transmitted was 5, with a range of 1-9.

This sounds bad. However, the EMS professionals and the physicians have somewhat different objectives. EMS desperately wants to share what they know about the scene and the patient. The trauma team wants to start the evaluation process using their own eyes and hands. What to do?

Bottom line: EMS to trauma team handoffs are a problem for many hospitals. EMS has a lot of valuable information, and the trauma team wants to keep the patient alive. They are both immersed in their own world, working to do what they think is best for the patient. Unfortunately, they could do better if the just worked together a bit more.

Tomorrow I’ll share a solution to the EMS-trauma team handoff problem.

Related posts:

Reference: Information loss in emergency medical services handover of trauma patients. Prehosp Emerg Care 13:280-285, 2009.