Tag Archives: pediatric

(Mis)Use of Helicopter Transport For Pediatric Trauma

Helicopter transport is an integral and important part of modern day trauma care. Since the inception helicopter emergency medical services (HEMS) for civilian use in the 1970’s, its use has been steadily increasing. And it’s expensive, at least five times more costly than ground transport. Plus, there are risks to both crew and patient, in that there have been 200 deaths of both patients and flight crews. Indeed, flight crews have one of the riskiest jobs, with 5 times more on-the-job deaths than police officers.

So it becomes very important to make sure that this mode of transport is justified. As I wrote previously, the adult HEMS literature is extensive, but not terribly convincing. There is far less data available regarding pediatric patients. And the data that does exist suggests that there may be significant overtriage and overuse.

A study using the National Trauma Data Bank (NTDB) was performed by researchers at Duke University. They reviewed the data for a 5 year period (2007-2011), which is fairly old in my opinion. And they included “children” up through age 18, which are also a bit old, in my opinion. Since there are no real quantitative criteria for overtriage in place, the authors picked three: low injury severity (ISS<10), normal physiology (RTS=12), and low predicted mortality using TRISS (<5%). A total of 127,489 patient records were analyzed.

Here are the factoids:

  • 14% arrived via helicopter EMS,  56% by ground EMS, and 29% by private vehicle or walk-in
  • HEMS patients were more likely to have head, thoracic, or abdominal injuries, and overall severe injuries (good!)
  • Adjusted mortality for patients transported by air was significantly less than for ground (really good)
  • 38% of HEMS patients had ISS < 9, and 66% had completely normal physiology (bad)
  • Overall, 32% to 82% of children did not meet criteria for appropriate transport

Bottom line: There are a number of flaws in this study that could be improved upon. However, it does provide some interesting data. Helicopter transport does save lives in the younger population, and was estimated at 2 per 100 flights. This is very promising. However, offsetting this was the fact that nearly half of transports failed one or more arbitrary appropriateness criteria. The recommendations I published yesterday need to be adopted, and both state trauma systems and local EMS agencies need to develop and enforce guidelines to optimally use this valuable and expensive resource.

Reference: Current use and outcomes of helicopter transport in pediatric trauma: a review of 18,291 transports. J Ped Surg in press 27 Oct 2016.

Predicting VTE Risk In Children

There’s a lot of debate about if and at what age injured children develop significant risk for venous thromboembolism (VTE). In the adult world, it’s a little more clear cut, and nearly every patient gets some type of prophylactic device or drug. Kids, we’re not so certain about at all.

The Children’s Hospital of Wisconsin tried to tease out these factors to develop and implement a practice guideline for pediatric VTE prophylaxis. They prospectively reviewed over 4000 pediatric patients admitted over a 6 year period.

It looks like the guideline was developed using some or all of this data, then tested using regression models to determine which factors were significant. The guideline was then tweaked and a final model implemented.

Here are the factoids:

  • 588 of the patients (14%) were admitted to the ICU, and 199 of these were identified as high risk by the guidelines
  • Median age was 10 (this is always important in these studies)
  • VTE occurred in 4% of the ICU patients, and 10% of the high risk ones
  • Significant risk factors included presence of central venous catheter, use of inotropes, immobilization, and GCS < 9

Bottom line: This abstract confuses me. How were the guidelines developed? What were they, exactly? And the results seem to pertain to the ICU patients only. What about the non-ICU kids? The abstract just can’t convey enough information to do the study justice. Hopefully, the oral presentation will explain all.

I prefer a very nice analysis done at the Oregon Health Science University in Portland. I wrote about this study earlier this year. The authors developed a very useful calculator that includes most of the risk factors in this model, and a few more. Input the specific risks, and out comes a nice score. The only issue is, what is the score threshold to begin prophylaxis and monitoring? Much more practical (and understandable) than this abstract. Check it out at the link below.

Related post:


  1. Evaluation of guidelines for injured children at high risk for VTE: a prospective observational study. AAST 2016, Paper 68.
  2. A Clinical Tool for the Prediction of Venous Thromboembolism in Pediatric Trauma Patients. JAMA Surg 151(1):50-57, 2016.

Potentially Avoidable Pediatric Transfers

Pediatric emergency and trauma care is not readily available across a sizable chunk of the US, particularly in rural areas. Couple this with the fact that many rural emergency providers are not necessarily trained in emergency medicine and may have little recent pediatric training fosters the common practice of transferring these injured children to a higher level of care.

And unfortunately, many of these transferred children have relatively simple issues that really don’t actually need a transfer. Some studies have reported that up to 40% of children sent to tertiary pediatric centers are sent home in less than 24 hours.

Most research in this area focuses on single medical center experiences. An article currently in press looks at the experience of the entire state of Iowa over a 10 year period. The authors looked at all claims data for children between ages 8 days and 18 years. Children who were transferred were compared to those who were not.

Here are the factoids:

  • 2 million cases were included in the study, and only 1% were transferred (21,319)
  • Children in rural areas were transferred 3x more often than those in urban areas
  • Only 63% were transferred to a designated children’s hospital, and 45% were sent to an ED rather than direct transfer to an inpatient bed
  • 39% were potentially avoidable transfers, meaning that they were discharged from the receiving ED or the hospital within 24 hours of admission
  • Two of the top 5 reasons for transfer were trauma related: fracture, and TBI without blood in the head.
  • The cost for potentially avoidable transfers in the top 5 categories was $2 million dollars (!)

Bottom line: This is a very comprehensive study that shows the magnitude and cost consequences of potentially inappropriate pediatric transfers. It was not designed to figure out what to do about it, but it provides some insight for the problem solvers out there. Since we know the top 5 transfer diagnoses (seizure, fracture, TBI without bleeding, respiratory infection, and asthma), we can start to work on systems to provide education to rural providers on these topics, as well as real-time interaction to help them determine the 60% that really do need a higher level of care. Telemedicine will eventually be a big part of this, but most areas around the country are still struggling to figure out the details. Stay tuned!

Reference: Potentially Avoidable Pediatric Interfacility Transfer is a Costly Burden for Rural Families: A Cohort Study. Acad Emerg Med 28 March 2016, in press.

Falls vs Abuse In Kids: Differences In Injury Patterns

Nonaccidental trauma (NAT) in children, a.k.a. child abuse, is a problem that trauma professionals see all too frequently. Much of the time, the abuse is obvious. Sometimes, it is more insidious and occult, and we can be misdirected by the history given by the caregivers. The most frequent story used to cover up obvious injuries child abuse is that the child fell. Unfortunately, the injuries observed from abuse may be very similar to those seen from shaking, grabbing, lifting, and throwing.

A paper that is currently in press from the University of Colorado at Aurora seeks to clarify this a bit, trying to tease out nuances in common injury patterns that may help us distinguish NAT from falls. They performed a retrospective database review at both Denver Health and Children’s Health Colorado over a 15 year period. They specifically looked at children with blunt abdominal trauma. Unfortunately, they chose the age group < 18 years as “children”, which muddies the picture somewhat. 

Here are the factoids:

  • Of the 1,005 blunt abdominal trauma cases identified, 65 were confirmed to be due to NAT, and 115 were actually from falls
  • 63 of the 65 NAT victims were less than 5 years old, but only 35 of the falls were
  • Average ISS for the NAT kids was 20, vs only 12 for falls
  • There were more hollow viscus injuries in NAT kids (25 vs 2), and more pancreatic injuries (16 vs 2)
  • If a head injury was present, it was more severe with NAT
  • Hospital LOS was longer after NAT, which makes sense given the ISS and head info above

Bottom line: Unfortunately, the authors could accumulate only a small amount of data over 15 years, but it paints a clear picture. Injured children presenting with a history of falls, particularly young children who can’t engage in the high energy pursuits of adolescents, should arouse suspicion. If multiple injuries are found, especially visceral or deep solid organ abdominal injury (pancreas), suspect foul play. Similarly, if the head injury is more severe, be suspicious. All trauma professionals need to keep the possibility of NAT in the back of their minds on every injured child they see!

Related posts:

Reference: Pediatric abdominal injury patterns caused by “falls”: A comparison between nonaccidental and accidental trauma. J Ped Surg, in press, Feb 2, 2016.

Nursing Tips for Managing Pediatric Orthopedic Trauma

Nurses have a complementary role with physicians in caring for children with orthopedic injuries. Typically, the child will have been evaluated and had some sort of fracture management implemented. In children, nursing management is easer than in adults since a child is less likely to need an invasive surgical procedure. Many fractures can be dealt with using casts and splints alone.

Here are a few tips for providing the best care for your pediatric patients:

  • Ensure adequate splinting / casting. You will have an opportunity to see the child at their usual level of activity. If it appears likely that their activity may defeat the purpose of the cast or splint, inform the surgeon or extender so they can apply a better one.
  • Focus on pain control. Nothing aggravates parents more than seeing their child in pain! Make sure acetominophen or ibuprofen is available prn if pain is very mild, or scheduled if more significant. Ensure that mild narcotics are available if pain levels are higher. Remember, stool softeners are mandatory if narcotics are given.
  • Monitor compartments frequently. If a cast is used, check the distal part of the extremity for pain, unwillingness to move, numbness or swelling. If any are present, call the physician or extender and expect prompt attention to the problem.
  • Always think about the possibility of abuse. Fractures are rarely seen in children under 3, and almost never if less than 1 year old. If you have concerns about the physical findings or parent interactions, let the physician and social workers know immediately.