Tag Archives: EMS

YouTube player

Ambulance 2.0: The “Super Ambulance” of the Future

Lifebot Technology has been working to upgrade the prehospital environment and connect it more closely with trauma professionals in the trauma center. They have done this by developing a so-called “super ambulance.” These ambulances are outfitted with new variations of tried and true technology. This includes a special Hewlett-Packard Slate tablet computer, multiple cameras inside the ambulance, cameras that are wearable by medics, and a state-of-the-art telemedicine system.

The Slate tablet allows for hand-held patient monitoring, GPS positioning, high resolution imaging via its built-in camera, patient medical record charting, and connection to the trauma center base station. At the base, the emergency physician or trauma surgeon can view monitoring information, control any camera in the ambulance to focus in on the action, and even draw on the Slate’s screen to show the crew areas of interest (telestration).

The system is pricey ($50,000 US), but is extremely valuable in rural areas where the nearest trauma center may be quite far away. In theory, a doctor could walk a medic through a procedure to resolve a problem that may kill their patient before they can get to the hospital. The system is already in use in select areas in Arizona, Florida and Texas.

Reference: Displayed at the HIMSS 2011 (Healthcare Information and Management Systems Society) annual meeting, February 20-24, 2011 in Orlando, FL.

Disclosure: I have no financial interest in Lifebot Technology or Hewlett Packard

Fatigue Week V: Final Thoughts

Fatigue is a major problem for many healthcare providers, from prehospital those working in post-discharge institutions. Some interesting and underappreciated statistics about work-related injuries and shift work:

  • Work related injuries increase on off-shifts. Compared to day shift, 15% more injuries occur on evenings and 28% more on nights.
  • When working long shifts, there is a 13% increase in injuries after 10 hours, and a 30% increase after 12 hours.
  • When working consecutive nursing shifts, there is an 8% increase in injury risk the 2nd night, a 38% increase the 3rd night, and a 70% increase the 4th night.

We know sleep deprivation and fatigue are bad. The laundry list of adverse effects is lengthy and includes confusion, memory problems, depression, weight gain, headache, diabetes, cardiovascular disease, and as we’ve discussed all week, serious performance problems.

What can be done about it? The key is to raise awareness, along with acceptance of the remedies. Many hospital workplaces are doing something about it. Here are some successful interventions that reduce workplace fatigue:

  • Authorize a real break system. A break is a 30 minute period which is ideally away from the immediate work setting, where there are no disturbances (phone, pager)
  • Ensure effective “handoffs” between co-workers when taking breaks
  • Encourage workers to identify fatigue in their co-workers and find ways to decrease it
  • Modify schedules to adhere to the Institute of Medicine’s standards
       * No more than 20 hours of overtime a week
       * Limit the number of 12 hours shifts
       * No double shifts 

Some workplaces are unfortunately not as progressive, and the work culture takes pride in showing how individuals can “power through” even when tired. Just remember, this is bad for you and bad for your patients. As you grow older, it becomes even more difficult and dangerous. It’s only a matter of time before someone, somewhere goes too far, and they or their patient will end up “dead tired.”

Fatigue Week II: Sleep Quality and Fatigue in Prehospital Providers

EMS providers across the country are assigned to a variety of schedules, ranging from shift work to continuous 24 hour service. Overnight duty, rotating schedules, early awakening and sleep interruptions are common. Unfortunately, there are not many studies on the effects of fatigue on EMS. I did manage to find an interesting study from last year that I’d like to share.

A group of about 3,000 providers attending a national conference were surveyed using 2 test instruments (Pittsburgh Sleep Quality Index (PSQI) and Chalder Fatigue Questionnaire (CFQ)). The PSQI measures subjective sleep quality, sleep duration, disturbances, use of sleeping meds and daytime dysfunction. The CFQ measures both physical and mental fatigue.

Only 119 surveys were completed, despite the fact that a $5 gift card was offered (not enough?). The most common certification was EMT-Basic (63%) and most had worked less than 10 years. Most were full-time, with most working 4-15 shifts per month. The following demographics were of interest:

  • Self-reported good health – 70%
  • Nonsmokers – 85%
  • Moderate alcohol or less – 62%
  • Overweight or obese – 85%

A total of 45% reported experiencing severe physical and mental fatigue at work, and this increased with years of experience. The sleep quality score confirmed this fact. Also of interest was the incidental finding of a high proportion of overweight or obese individuals. Sleep deprivation is known to increase weight, and increased weight is known to increase sleep problems, creating a vicious cycle.

Bottom line: This is a small convenience study, but it was enough to show that there is a problem with fatigue and sleep quality in EMS providers. Federal law mandates rest periods for pilots, truck drivers and tanker ship personnel. The accrediting body for resident physicians has guidelines in place that limit their time in the hospital. Prehospital providers perform a service that is just as vital, so it may be time to start looking at a more reasonable set of scheduling and work guidelines to protect them and their precious cargo.

Reference: Sleep quality and fatigue among prehospital providers. Prehos Emerg Care 14(2):187-193, April 6, 2010.

Comparison of Cervical Spine Stabilization

Eight months ago I blogged about inline stabilization vs inline traction of the cervical spine. Click here to read the post. A reader recently asked what the optimal method for inline stabilization is.

We’ve been pondering this question for nearly 30 years. In 1983, trauma surgeons at UCLA looked at a number of devices available at that time and tested them on normal volunteers. They measured neck motion to see which was “best." 

Here’s what they found:

  • Soft collar – In general, this decreased rotation by 8 degrees but insignificantly protected against flexion and extension. Basically, this keeps your neck warm and little else.
  • Hard collars – A variety of collars available in that era were tested. They all allowed about 8% flexion, 18% lateral movement, and 2% rotation. The Philadelphia collar allowed the least extension.
  • Sandbags and tape – Surprisingly, this was the best. It allowed no flexion and only a few percent movement in any other direction.

The Mayo clinic compared four specific hard collars in 2007 (Miami J, Miami J with Occian back, Aspen, Philadelphia). They found that the Miami J and Philadelphia collars reduced neck movement the best. The Miami J with or without the Occian back provided the best relief from pressure. The Aspen allowed more movement in all axes.

And finally, the halo vest is the gold standard. These tend to be used rarely and in very special circumstances.

Bottom line: 

  • For EMS: Rigid collar per your protocol is the standard. In a pinch you can use good old tape and sandbags with excellent results.
  • For physicians: The Miami J provides the most limitation of movement. If the collar will be needed for more than a short time, consider the well-padded Occian back Miami J (see below).

Miami J with Occian back

References:

  • Efficacy of cervical spine immobilization methods. J Trauma 23(6):461-465, 1983.
  • Range-of-motion restriction and craniofacial tissue-interface pressure from four cervical collars. J Trauma 63(5):1120, 1126, 2007.