Category Archives: Prehospital

Prehospital Use Of The ABC Score And MTP

Early and appropriate resuscitation is critical in any severely injured trauma patient. Typically, the trauma team assesses the patient upon arrival and makes a determination as to what type of resuscitation fluids are most appropriate. If blood is judged to be necessary, individual units can be given, or the massive transfusion protocol (MTP) can be activated.

I’ve previously written about two objective methods to assist in the decision to activate your MTP, shock index (SI) and assessment for blood comsumption (ABC). These have traditionally been applied once the patient arrived. What would happen if you used prehospital information to calculate the ABC score and were able to activate your MTP sooner rather than later?

The group at the University of Colorado in Aurora studied this concept. The charge nurse captured information to calculate the ABC score from the initial prehospital information received by phone while the patient was enroute. He or she would then activate the MTP in order to have blood products delivered as close to patient arrival as possible.

They reviewed their experience over a 29-month period. The first 15 months used their original system, calculating ABC on arrival and then deciding whether to activate MTP. During the final 14 months, it was calculated prior to patient arrival and the MTP was “pre”-activated when the score was 2 or more. The primary outcome studied was mortality, and secondary variables were appropriate activation of MTP, and adherence to balanced resuscitation ratios.

Here are the factoids:

  • A total of 119 patients with hypotension and/or MTP activation were studied; 24 occurred pre-implementation and 95 post
  • Pre-implementation, 63% of 24 hypotensive patients had MTP activation and only 6 (40%) received blood. Only 2 patients (33%) had RBC:FFP ratios between 1:1 and 2:1.
  • Post-implementation, 98% of hypotensive patients had MTP activation, a 6-fold increase
  • Also post-implementation, 42% of the activations received the blood, and balanced product ratios increased to 77%
  • Overall mortality decreased from 42% to 19% after implementation, all of which occurred in the penetrating injury group
  • Hospital and ICU lengths of stay were unchanged and there were no readmissions

Bottom line: The authors actually rolled two studies into one here. The main focus of the paper was to look at use of ABC score using prehospital information, but they also changed their MTP setup at the same time. During the initial part of the study, they did not have thawed plasma available, so the first cooler contained only red cells. Plasma was delivered when available, usually about 45 minutes after the first cooler had arrived. Post-implementation, thawed plasma was included in the first cooler.

So is the reduction in mortality (only in penetrating injury) due to early availability of the entire cooler, or because the desired product ratios were much more consistently met? Unfortunately, we can’t know.

This is a relatively small study, but the results with respect to blood actually being given, attainment of ratios, and mortality are impressive. Is the takeaway message to activate MTP early based on prehospital info or to make sure all coolers stock plasma? My take is that it’s probably best to do both!

Related posts:

Reference: Effect of pre-hospital use of the assessment of blood consumption score and pre-thawed fresh frozen plasma on resuscitation and trauma mortality. JACS 228:141-147, 2019.

Print Friendly, PDF & Email

EAST 2019 #13: Geomapping Helicopter transports

Helicopter EMS (HEMS) transports are a valuable yet very expensive resource. Unfortunately, many state trauma systems or local EMS agencies do not provide specific guidance for best use. A group at the University of Alabama in Birmingham performed a geospatial analysis of helicopter transports in their area to determine the efficiency of HEMS operations.

This group created a sort of “heat map” that showed the number of transports overlaid on a geographical map of their catchment area. It included HEMS transports over a 6-year period directly from the scene. Drive and flight times were calculated, and the latter also included flight time to reach the scene.


Here’s the heat map showing the entire state of Alabama. The approximate location of Birmingham is indicated in yellow.

Here are the factoids:

  • Nearly 3000 patients were identified, and 1911 had scene locations recorded so analysis could be performed
  • 35% of patients had minor injuries with ISS 1-8 (!!)
  • Median flight time was 58 minutes, and median drive time was only 65 minutes
  • In 28% of cases, drive time would have been shorter than flight time when considering time for the helicopter to reach the scene
  • Conclusion: over one fourth of patients might have arrived at the hospital more quickly by ground ambulance

Here are some questions for the authors and presenter to consider in advance to help them prepare for audience questions:

  • Why include time for the helicopter to reach the scene but not a ground ambulance? Doesn’t this stack the deck in favor of ground transport?
  • Was there any correlation between scene proximity and high ISS? This might have been a reason for calling the helicopter.
  • Did you see any patterns in the low ISS group? This could provide insight into the EMS thought processes. These patients are potentially the low hanging fruit to direct educational activities to reduce HEMS use.

This is thought-provoking work and I look forward to hearing all the details!

Reference: Use of helicopters for retrieval of trauma patients: a geospatial analysis. EAST 2019, Quick Shot Paper #26.

Print Friendly, PDF & Email

Best of AAST #4: Better Triage For Scene Helicopter Transport

There has been tremendous debate around the value and use of prehospital helicopter emergency medical services (HEMS). It’s fast, but also expensive, and there is always a small amount of added risk to patients during transport. Over the years, there has been a significant increase in the number of helicopter services, and in some cases it seems like several services are dashing to accident scenes in the hope that they can pick up the patient.

Overuse of HEMS has also been recognized, with some patients transported who could have just as easily and safely been moved by ground ambulance. This is a particularly vexing problem with pediatric patients.

The holy grail of trauma HEMS has been to find some easy to identify scene variables that reliably predict which patients should be transported by air. A group in North Carolina tapped the state trauma registry to attempt to develop such a system. They analyzed data in the registry over a three year period, mathematically analyzing for easily identified predictors of ED death or need for operating room, interventional radiology, or ICU admission.

Here are the factoids:

  • The percentage of flights from the scene increased from 7% to 9% compared to data from fifteen years prior to this study
  • Vital signs (SBP, pulse, GCS motor) had the best correlation with mortality, and these were used to develop a regression model for triage
  • Patients with normal SBP, pulse, and GCS motor of 6 were found to safely transported by ground EMS, with similarly low mortality for ground or air
  • During the study period, triaging patients that met these criteria would have saved the state system about $19 million

Bottom line: Every state should take a look at their guidelines for helicopter vs ground transport for scene runs. This is an expensive tool, and should be treated with respect. Just because a helicopter is available does not mean it should be used. The commander on the scene must make the proper decision based on variables like these, but also apply their knowledge of traffic patterns, time and distance from the most appropriate receiving trauma center.

Reference: Trauma system resource preservation: a simple scene triage tool can reduce helicopter emergency medical services (HEMS) over-utilization in a state trauma system. Session IV Paper 13, AAST 2018.

Print Friendly, PDF & Email

Uber / Lyft For Medical Transport???

In this day and age of ride sharing apps like Uber and Lyft, it is possible to get a cheap ride virtually anywhere there is car service and a smart phone. And of course, some people have used these services for transportation to the hospital in lieu of an ambulance ride. What might the impact be of ride services on patient transport, for both patient and EMS?

A paper in preparation suggests that ambulance service calls decreased by 7% after the introduction of UberX rides. Now, there are a lot of questions here, because the full paper has not yet been peer reviewed, and the results write-up is pretty sketchy. But it does beg the question.

Ambulance rides are expensive. Depending on region, they may range from $500-$5000. And although insurance may reduce the out of pocket cost, it can still be expensive. So what are the pros vs the cons of using Uber or Lyft for medical transport?

Pros:

  • Ride shares are inexpensive compared to an ambulance ride
  • They may arrive more quickly because they tend to circulate around an area, as opposed to using a fixed base
  • Riders may select their preferred hospital without being overridden by EMS (although it may be an incorrect choice)
  • May reduce EMS usage for low acuity patients

Cons:

  • No professional medical care available during the ride
  • May end up being slower due to lack of lights and siren
  • Damage fees of $250+ for messing up the car

Bottom line: Uber and Lyft are just another version of the “arrival by private vehicle” paradigm. Use of these services relies on the customer/patient having very good judgment and insight into their medical conditions and care needs. And from personal experience, this is not always the case. I would not encourage the general public to use these services for medical transport, and neither do the companies themselves!

Reference: Did UberX Reduce Ambulance Volume? Unpublished paper, October 24, 2017.

Print Friendly, PDF & Email