Category Archives: Head

Screening For BCVI

In my last post, I described how common we think blunt carotid and vertebral injury (BCVI) really is. Today, I’ll review how we screen for this condition.

Currently, there are three systems in use: Denver, Expanded Denver, and Modified Memphis. Let’s look at each in detail.

Denver BCVI Screening

There is an original Denver screening system, and a more recent modification. The original system was divided into mechanism, physical signs, and radiographic findings. It was rather rudimentary and evolved into the following which uses both signs and symptoms, and high-risk factors.

Signs and symptoms

  • potential arterial hemorrhage from the neck, nose, or mouth
  • cervical bruit in patients <50 years of age
  • expanding cervical hematoma
  • focal neurologic deficit (transient ischemic attack, hemiparesis, vertebrobasilar symptoms, Horner syndrome) incongruous with head CT findings
  • stroke on CT

Risk factors

  • Le Fort II or III mid-face fractures
  • Cervical spine fractures (including subluxations), especially fractures involving transverse foramen or C1-C3 Vertebrae
  • Basilar skull fracture and involvement of carotid canal
  • Diffuse axonal injury with GCS <8
  • Near hanging with anoxic brain injury
  • Seat belt sign (or other soft tissue neck injury) especially if significant associated swelling or altered level of consciousness

The Denver group reviewed their criteria in 2012 and found that 20% of the patients who had identified BCVI did not meet any of their criteria. And obviously, this number cannot include those who were never symptomatic and therefore never discovered.

Based on their analysis, they added several additional risk factors to the original system:

  • Mandible fracture
  • Complex skull fracture/basilar skull fracture/occipital condyle fracture
  • TBI with thoracic injuries
  • Scalp degloving
  • Thoracic vascular injuries
  • Blunt cardiac rupture

The downside of these modifications is that they are a little more complicated to identify. The original criteria were fairly straightforward yes/no items. But “TBI with thoracic injuries?” Both the TBI part and the thoracic injury part are very vague. This modification casts a wider net for BCVI, but the holes in the net are much larger.

Memphis BCVI Screening

Let’s move on to the modified Memphis system for identifying BCVI. It consists of seven findings that overlap significantly with the Denver criteria. The underlined phrases indicated the modifications that were applied to the original criteria.

  • base of skull fracture with involvement of the carotid canal
  • base of skull fracture with involvement of petrous temporal bone
  • cervical spine fracture (including subluxation, transverse foramen involvement, and upper cervical spine fracture)
  • neurological exam findings not explained by neuroimaging
  • Horner syndrome
  • Le Fort II or III fracture pattern
  • neck soft tissue injury (e.g. seatbelt sign, hanging, hematoma)

Interestingly, these modifications were first described in an abstract which was never published as a paper. Yet somehow, they stuck with us.

So there are now two or three possible systems to choose from when deciding to screen your blunt trauma patient. Which one is best?

Let’s go back to the AAST abstract presented by the Birmingham group this year that I mentioned previously. Not only did they determine a more accurate incidence, but they also tested the three major screening systems to see how each fared. See Table 1.

Look at these numbers closely. When any of these systems were applied and the screen was negative, the actual percentage of patients who still actually had the injury ranged from about 25% to 50%! Basically, it was a coin toss with the exception of the Expanded Denver criteria performing a little better.

If you are a patient and you actually have the injury, how often does any screening system pick it up? Oh, about one in five times. Again, this is not what we want to see.

So what to do? The Expanded Denver screen has a lower false negative rate, but the total number of positive screens, and hence the number of studies performed, doubles when it is used.

Here’s how I think about it. BCVI is more common than we thought in major blunt trauma. If not identified, a catastrophic stroke may occur. Current screening systems successfully flag only 50% of patients for imaging. So in my opinion, we need to consider imaging every patient who is already slated to receive a head and cervical spine CT after major blunt trauma! At least until we have a more selective (and reliable) set of screening criteria.

References:

  • (Denver) Optimizing screening for blunt cerebrovascular injuries. Am J Surg. 1999;178:517–522.
  • (Expanded Denver) Blunt cerebrovascular injuries: Redefining screening criteria in the era of noninvasive diagnosis. J Trauma 2012;72(2):330-337.
  • (Memphis) Prospective screening for blunt cerebrovascular injuries: analysis of diagnostic modalities and outcomes. Ann Surg. 2002, 236 (3): 386-393.
  • (Modified Memphis) Diagnosis of carotid and vertebral artery injury in major trauma with head injury. Crit care. 2010;14(supp1):S100.
Print Friendly, PDF & Email

How Common Is BCVI, Really?

Blunt carotid and vertebral artery injuries (BCVI) are an under-appreciated problem after blunt trauma. Several screening tools have been published over the years, but they tend to be unevenly applied at individual trauma centers. I will discuss them in detail in the next section.

For the longest time, the overall incidence of BCVI was thought to be low, on the order of 1-2%. This is the number I learned years ago, and it has not really changed over time.

But how do we know for sure? Well, the group at Birmingham retrospectively reviewed every CT angiogram (CTA) of the neck they did in a recent two-year period. They did this after adopting a policy of imaging each and every one of their major blunt trauma patients for BCVI. Each patient chart was also evaluated to see if the patient met any of the criteria for the three commonly used screening systems.

During the study period, a total of 6,287 of 6,800 blunt trauma patients underwent BCVI screening with CTA of the neck. They discovered that 480 patients (7.6%) were positive for BCVI!

This is a shocking 8x higher than we expected! Why hasn’t this been obvious until now? Most likely because we were previously only aware of patients who became symptomatic. Luckily, many of these patients dodge the proverbial bullet and never exhibit any symptoms at all.

So why should we be worried? This is one of those clinical entities like blunt thoracic aortic disruption that potentially has terrible consequences if ignored. Although the number of patients who develop sequelae from their BCVI is small, suffering a stroke can be catastrophic.

Should we perform a screening study for all blunt trauma patients? Seems like overkill, or is it? Is there any way we be more selective about it?

In the next post, I’ll review the three current screening tools  used to determine which patients should receive CTA, and how good they are.

Reference: Universal screening for blunt cerebrovascular injury. J Trauma 90(2):224-231, 2021.

Print Friendly, PDF & Email

It’s BCVI Week!

This post will kick off a series of posts on BCVI. What is that, you ask? There seems to be some confusion as to what the acronym BCVI actually stands for. Some people believe that it means blunt cerebrovascular injury. This is not correct, because that term refers to injury to just about any vessel inside the skull.

The correct interpretation is blunt carotid and vertebral artery injury. This term refers to any portion and any combination of injury to those two pairs of vessels, from where they arise on the great vessels, all the way up into the base of the skull. Here’s a nice diagram:

Note that we will be excluding the external carotid arteries from this discussion, since injuries to them do not have any impact on the brain. They can cause troublesome bleeding, though.

These arteries are relatively protected from harm during blunt trauma. But given enough energy, bad things can happen. Fortunately, injuries to these structures are not very common, but unfortunately many trauma professionals under-appreciate their frequency and severity.

Over the next four posts, I’m going to provide an update on what we know about BCVI. I will try to tease out the true incidence, review the (multiple) screening systems, and discuss various ways to manage these injuries.

In the next post, we’ll explore the incidence of this injury. Is it truly as uncommon as we think?

Print Friendly, PDF & Email

What Is The Zumkeller Index in TBI?

I learned something new today: the Zumkeller index. Exciting! Most trauma professionals who take care of serious head trauma have already recognized the importance of quantifying extra-axial hematoma thickness (HT) and midline shift (MLS) of the brain. Here’s a picture to illustrate the concept:

Source: Trauma Surgery Acute Care Open

Zumkeller and colleagues first described the use of the mathematical difference between these two values in prognosticating outcomes in severe TBI in 1996.

Zumkeller Index (ZI) = Midline shift (MDI) – Hematoma thickness (HT)

Intuitively, we’ve been using this all along. At some point, we recognized that if the degree of midline shift exceeds the hematoma thickness, it’s a bad sign. The easiest way to explain this is that there is injury to the brain that is causing swelling so the shift is greater than the size of the hematoma. 

The authors of the current paper from Brazil decided to quantify the prognostic value of the ZI by doing a post-hoc analysis of a previously completed prospective study.  They limited their study to adult patients with an acute traumatic subdural hematoma confirmed by CT scan. It used data from the 4-year period from 2012-2015.

They compared demographics and outcomes in three cohorts of ZI:

  • Zero or negative ZI, meaning that the midline shift was less than the size of the hematoma
  • ZI from 0.1 mm to 3.0 mm
  • ZI > 3.0 mm

And here are the factoids:’

  • A total of 114 patients were studied, and the mechanism of injury was about 50:50 from motor vehicle crashes vs falls
  • About two thirds were classified as severe and the others were mild to moderate, based on GCS
  • Median initial GCS decreased from 6 in the low ZI group to 3 in the highest ZI group, implying that injuries were worse in the highest ZI group
  • Mortality (14-day) was 91% in the highest ZI group and only in the low 30% range in the others
  • Regression analysis showed that patients with ZI > 3 had an 8x chance of dying within 14 days compared to the others

Source: Trauma Surgery Acute Care Open

Bottom line: This study confirms and quantifies something that many of us have been unconsciously using all along. Of course there are some possible confounding factors that were not quantified in this study. Patients with the more severe injuries tended to also have subarachnoid hemorrhage and/or intra-ventricular blood. Both are predictors of worse prognosis. But this is a nice study that quantifies our subjective impressions.

The Zumkeller Index is an easily applied tool using the measuring tool of your PACS application. It can be used to determine how aggressively to treat your patient, and may help the neurosurgeons decide who should receive a decompressive craniectomy and how soon.

Reference: Mismatch between midline shift and hematoma thickness as a prognostic factor of mortality in patients sustaining acute subdural hematomaTrauma Surgery & Acute Care Open 2021;6:e000707. doi: 10.1136/tsaco-2021-000707

Print Friendly, PDF & Email

What You Need To Know About: Frontal Sinus Fractures

Fracture of the frontal sinus is less common than other facial injuries, but can be more complex to deal with, both in the shorter and longer terms. These are generally high energy injuries, and facial impact in car crashes is the most common mechanism. Fists generally can’t cause the injury, but blunt objects like baseball bats can.

Here’s the normal anatomy:

sinus-fracture-treatment

 

Source: www.facialtraumamd.com

There are two “tables”, the anterior and the posterior. The anterior is covered with skin and a small amount of subcutaneous tissue. The posterior table is separated from the brain by the meninges.

Here’s an image of an open fracture involving both tables. Note the underlying pneumocephalus.

frontal_sinus1

A third of injuries violate the anterior table, and two thirds violate both. Posterior table fractures are very rare. A third of all patients will develop a CSF leak, typically from their nose.

These fractures may be (rarely) identified on physical exam if deformity and flattening is noted over the forehead. Most of the time, these patients undergo imaging for brain injury and the fracture is found incidentally. Once identified, go back and specifically look for a CSF leak. Clear fluid in the nose is, by definition, CSF. Don’t waste time on a beta-2 transferring (see below).

If a laceration is clearly visible over the fracture, or if a CSF leak was identified, notify your maxillofacial specialist immediately. If more than a little pneumocephalus is present, let your neurosurgeon know. Otherwise, your consults can wait until the next morning.

In general, these patients frequently require surgery for the fracture, either to restore cosmetic contours or to avoid mucocele formation. However, these are seldom needed urgently unless the fracture is an open fracture with contamination or there is a significant CSF leak. If in doubt, though, consult your specialist.

Related posts:

Print Friendly, PDF & Email