Yes, this blog is officially 6 years old today! Thanks to all my loyal readers around the world for your support and tolerance. I’m looking forward to the next year of interest stuff for trauma professionals, and I hop you are too!
![](https://67.media.tumblr.com/b147579b12fb7a9e8454b9a2d76546ae/tumblr_inline_o0lhcouBQx1qa4rug_540.jpg)
Yes, this blog is officially 6 years old today! Thanks to all my loyal readers around the world for your support and tolerance. I’m looking forward to the next year of interest stuff for trauma professionals, and I hop you are too!
Welcome to the current newsletter. This is the second of two issues that will give quick analyses of some of the better oral and poster abstracts that will be presented at the 2016 Annual Scientific Assembly this month. Here’s the scoop on what’s inside:
Subscribers received the newsletter last Sunday night. If you want to subscribe to get early delivery in the future (and download back issues), click here.
Air transport of trauma patients has resulted in the creating a mobile intensive care unit in the passenger compartment of the aircraft. Since trauma patients frequently need blood, it was logical to begin stocking blood products on board. Once again, though, it sounds like a good idea. But does it make a difference?
Vanderbilt University carried out a retrospective review of aeromedical transports to its Level I trauma center. The authors chose overall mortality and 24-hour mortality as their endpoints.
Here are the factoids:
Bottom line: This abstract seems to corroborate a few other studies that show no benefit to prehospital blood administration. So why do we still do it? Because we don’t know the full answer yet. Using mortality alone is a very crude outcome measure. What about early complications, ventilator times, time in the ICU, and other soft measures? More work is needed to slice and dice this appropriately enough to answer the question.
Reference: Blood transfusion: in the air tonight? EAST 2016 Oral abstract #5, resident research competition.
Okay, there’s only one thing I dislike writing about more than an animal study. And that’s writing about a bench research study. First, I don’t even pretend to know enough about most of it to make any real sense of it. But even more importantly, the actual translation into clinical practice is far in the future and frequently never happens. So many times it’s just an academic exercise to get a paper published.
But this is another paper with a startling result that begs rapid follow-up and animal or human study. The use of nebulizers and inhaled aerosols is commonplace in ventilated patients in the typical ICU setting. A recent trial of an inhaled cocktail containing heparin, albuterol, and n-acetylcysteine (mucomyst) unexpectedly resulted in a higher incidence of pneumonia. So which one is the offending ingredient?
Since mucomyst is therapeutically used to change the properties of mucus, a group at Wayne State in Detroit looked at its effect on mucus, cytokine response, and bacterial transcytosis in an in vitro model.
Here are the factoids:
Bottom line: This is startling news that involves a medication we tend to take for granted. Again, animal and/or human studies need to be quickly designed so we can determine whether the use of N-acetylcysteine should be avoided in ventilated patients.
N-acetylcysteine renders airway barrier at risk for bacterial passage and subsequent infection. EAST 2016 Oral abstract #4, resident research competition.
I’m sure that most of you have noticed that I very rarely write about animal studies. The problem I have is that the effects generally found are not dramatic, and results seldom carry over to humans the way we think they should.
But for this paper, I’ve made an exception. It uses a swine model to study the effect of air transport at altitude on TBI. As you may know, most aeromedical transport in the US is via helicopter.
However, some patients in more rural areas must travel longer distances to get high level trauma care, and may need to fly in fixed wing aircraft. U.S. military transports overseas use fixed wing almost exclusively.
Medical helicopters typically fly at only 1000-3000 feet above the ground, and the change in air pressure (and hence PaO2) is small. However, fixed wing aircraft fly at much higher altitudes, and the effective cabin altitude may rise to about 8000 feet. This is why your ears “pop” so many times as you ascend. You’ve essentially just climbed Mt. St. Helens in Washington state. The amount of oxygen in cabin air also decreases with altitude.
So what happens to a patient with severe TBI when exposed to these fluctuations in pressure and oxygen levels? A group at the Naval Research Center looked at this issue in anesthetized swine that received a TBI from a percussion device. They received standard TBI and injury-specific care (for pigs?) for two hours, then underwent flight simulation using a hypobaric chamber set to a cabin altitude of 8000 feet for four hours.
Here are the factoids:
Bottom line: Aeromedical transport at typical cabin altitudes significantly increases ICP and decreases CPP in an injured pig model. Although the groups are small, this information is startling and deserves rapid confirmation. This information may have a significant impact on the way we fly patients with head injuries. In particular, this is important for military aeromedical evacuation.
Reference: Brain hypoxia is exacerbated in hypobaria during aeromedical evacuation in swine with TBI. EAST 2016 Oral abstract #2, resident research competition.