Category Archives: General

Tips For Trauma Pros: Seat Belt Sign

We see seat belt signs at our trauma center with some regularity. There are plenty of papers out there that detail the injuries that occur and the need for a low threshold for surgically exploring these patients. I have not been able to find specific management guidelines, and want to share some tidbits I have learned over the years. Yes, this is based on anecdotal experience, but it’s the best we have right now.

Tips for trauma professionals:

  • Common injuries involve the terminal ileum, proximal jejunum, and sigmoid colon. My observation is that location in the car is associated with the injury location, probably because of the location of the seat belt buckle. In the US, drivers buckle on the right, and I’ve seen more terminal ileum and buckethandle injuries in this group. Front seat passengers buckle on the left, and I tend to see proximal jejunum and sigmoid injuries more often in them.
  • Seat belt sign on physical exam requires abdominal CT for evaluation, regardless of age. The high incidence of significant injury mandates this test.
  • Seat belt sign plus any anomaly on CT requires evaluation in the OR. The only exception would be a patient with minimal fluid only in the pelvis with an unremarkable abdominal exam. But I would watch them like a hawk.
  • In patients who cannot be examined clinically (e.g. severe TBI), a rising WBC count or lactate beginning on day 2 after adequate resuscitation should prompt a trip to the OR. This is an indirect method for detecting injured bowel or mesentery.
  • Laparoscopy may be used in patients with equivocal findings. Excessive blood, bile tinged fluid, succus, or lots of fibrin deposits on the bowel should prompt conversion to laparotomy. Tip: place all ports distant to the seat belt mark. The soft tissues are frequently disrupted, and gas may leak into this pocket prohibiting good insufflation of the peritoneal cavity.
  • If in doubt, open the abdomen. It’s bad form to put in the scope, see something odd, and walk away. Remember, any abnormal finding after trauma is related to trauma until proven otherwise. It’s almost never pre-existing disease.

Related posts:

Fasciotomy Closure: VAC vs Shoestrings

Fasciotomy is the definitive management for compartment syndrome. But by definition, once you make the incision things are going to gape apart. If they don’t, hmmm, there probably wasn’t a compartment syndrome in the first place. 

That’s the easy part. Now, how do you make the wound edges come together and achieve some kind of cosmetic result? Historically, a variety of techniques have been used. They include leaving it open to granulate, brute force sutures, progressive closures, and more recently, the VAC suction dressing. 

This latter technique has really caught on, and there are a number of benefits. First, the suction can reduce tissue edema, which may facilitate quicker closure. Another big advantage is that this dressing can be changed every 3 days, as opposed to daily (or more) for conventional dressings. 

The downsides: cost, and the fact that some people in the US don’t have insurance that covers home use of this device. This may drive up costs by increasing hospital length of stay.

But is it better than the other closure methods? A recently published paper from an orthopaedic and plastic surgical group in Greece details a randomized, prospective study comparing VAC assisted closure versus the shoelace technique.

Here are the factoids:

  • 50 patients with 82 leg fasciotomy wounds were randomized over 5 years
  • The VAC group had the device applied 3-6 days postop with a pressure of -125 torr. They were changed every 3 days.
  • The shoelace group had the bands applied at the end of the operation. Tightening began 4-6 days postop and was then performed daily.
  • Time to closure with the VAC was 19 days vs 15 days for shoelaces. This was a significant difference.
  • Skin grafts were required to complete the closure in 6 VAC cases, but in none of the shoelace patients
  • There were 6 wound infections in the VAC group vs 4 in the shoelace group (NS)
  • Average daily cost in the VAC group was 135 euro, but only 14 euro for shoelaces
  • The cost to add a skin graft in the VAC group added substantial additional expense

Bottom line: This is a nice comparison of two techniques that try to solve the wound closure problem using two different methods. The VAC reduces edema but does not shrink the wound, while shoelaces stretch the skin to close the wound but do nothing about edema. The VAC is slower and more expensive, and frequently requires an additional (and expensive) skin graft. Shoelaces are quicker and cheap. What to do? It would appear that wound shrinking methods are preferred. However, if edema is significant, apply a VAC first. Then switch to shoelaces once the edema has subsided for faster (and graft-less) closure.

Related post:

Reference: Wound closure of leg fasciotomy: Comparison of vacuum-assisted closure versus shoelace technique. A randomised study. Injury 45(5):890-893, 2014.

Bystander CPR For People Not In Cardiac Arrest

CPR has increased the survival rate of patients suffering cardiac arrest, and early bystander CPR has been shown to double or triple survival. The sad truth is that CPR is not frequently performed by the general public. The American Heart Association has attempted to simplify CPR to the point that even untrained bystanders can administer chest compressions without a pulse check and without rescue breathing.

Bystander CPR

But what happens if that well-intentioned bystander starts CPR in someone who has not arrested? How often does this happen? Can the patient be injured?

The Medical College of Wisconsin reviewed the charts of all patients who received bystander CPR in Milwaukee County over a six year period. There were 672 incidents of bystander CPR. Of those cases, 77 (12%) were not in arrest when assessed by EMS personnel, and the researchers focused on those patients.

EMS response time averaged 5 minutes, and was greater than 10 minutes in only 2 cases. Average patient age was 43(!). The male/female ratio was just about 50:50, and the majority of the incidents took place in the home or residence.

Hospital records were available for further analysis in 72 of the patients. A quarter were sent home, a quarter admitted to a ward bed, and half were admitted to an ICU. Only 12 (17%) had a cardiac-related discharge diagnosis. The next most common discharge diagnoses were near-drowning, respiratory failure and drug overdose. Younger patients (<19) were usually near-drowning victims, and older patients (>54) were most commonly diagnosed with syncope. Five patients did not survive. Only one CPR injury was identified, which was charted as rhabdomyolysis “secondary to having received CPR” (a weak injury diagnosis, in my opinion).

Bottom line: The potential benefit of bystander CPR outweighs the risk of injury or performing it on a victim who is not in arrest. This study shows that, although these patients may not need CPR, they are generally very ill. Given the rapid EMS response times and the younger average age of the victims, no real injuries occurred. The new American Heart Association recommendations are beneficial and should be distributed widely.

Reference: The frequency and consequences of cardiopulmonary resuscitation performed by bystanders on patients who are not in cardiac arrest. Prehosp Emerg Care 15:282-287, 2011.

Distracted Driving In Police Officers

A lot has been written about the hazards of distracted driving. Here is some information about the impact of distraction on police officers! A public safety administration class at St. Mary’s University here in Minnesota analyzed 378 crashes involving police cars from 2006 to 2010. The results are intriguing!

Key findings included:

  • Most crashes occurred during non-emergency responses
  • Crashes occurring during emergency responses were the most expensive
  • Distracted driving caused 14% of all crashes
  • Half of distracted driving crashes were due to the use of squad car computers
  • Average insurance claim was $3,000 per crash. However, if the crash was due to distracted driving it doubled to $6,000. If the crash was due to squad car computer distraction the average cost was $10,000!

This study is interesting, but it’s only a partial snapshot of this type of crash in one state. It did not include some of the larger police departments, such as St. Paul and Minneapolis.

Bottom line: It’s safe to assume that distracted driving is just as dangerous to police (and prehospital providers, too). And with growing dependence on advanced technology for law enforcement, this problem is just going to get worse. It is imperative that everything be done to improve safety for our law enforcement colleagues. Potential solutions include training to increase awareness of distractions within the car, simulator testing of driving while using cockpit technology, and ergonomic studies to maximize field of view from within the car.

Related posts:

Caution: Identifying Bowel and Mesenteric Injury by CT

CT scan is an invaluable tool for evaluating blunt abdominal trauma. Although it is very good at detecting solid organ injury, it is not so great with intestinal and mesenteric injuries. Older studies have suggested that CT can detect mesenteric injuries if done right, but a more recent study has shown good accuracy with a few imaging tweaks. But wait a minute!

A Taiwanese study looked at a series of prospectively studied victims of blunt abdominal trauma. Patients with abdominal pain or a positive FAST were entrolled (total 106). IV contrast was given, and scans during the arterial, portal, and equilibrium contrast phases were performed using a multidetector scanner. Images were read in a blinded fashion.

A total of 13 of 23 patients who underwent laparotomy were found to have a bowel or mesenteric injury. Five had bowel injury, 4 had mesenteric hemorrhage, and 4 had both. Mesenteric contrast extravasation was seen in 7 patients, and this correlated with mesenteric bleeding at laparotomy.

The authors found that the following signs on CT scan indicated injury:

  • Full or partial thickness change in bowel wall appearance
  • Increased mesenteric density
  • Free fluid without solid organ injury

Bottom line: This study shows that CT scan can detect bowel and mesenteric injury reliably if you scan the patient 3 times! This seems like over-radiation and overkill. A more intelligent way to approach this would be to perform a normal trauma abdominal scan. If a suspicious area of mesenteric or bowel thickening is seen, then a limited rescan through the affected area only for equilibrium phase images may be warranted. If actual contrast extrvasation is seen, no further scanning is needed. A quick trip to the OR is in order.

Reference: Contrast-enhanced multiphasic computed tomography for identifying life-threatening mesenteric hemorrhage and transmural bowel injuries. J Trauma 71(3):543-548, 2011.