Category Archives: Complications

Geriatric Week 5: Falls In The Elderly: The Consequences

Falls among the elderly are a huge problem. Our trauma service typically has 6-12 elders who have sustained significant injuries on it at any given time. About a third of people living at home over the age of 65 fall in a given year. At 80 years and up, half fall every year.

Because of this, falls are the leading cause of ED visits due to an injury for those over 65. What exactly are the societal consequences of all these falls? A yet to be published study from the Netherlands looked at injuries, costs and quality of life after falls in the elderly.

The top 5 most common injuries included simple wounds, wrist and hip fractures, and brain injuries. Although hip fracture typically was #5 in the 65-74 age groups, it was uniformly #1 in the 85+ group. Patterns were similar in both men and women. Interestingly, hip fractures were by far the most expensive, making up 43% of the cost of all injuries (total €200M). The next closest injuries by total cost, superficial injuries and femur fracture, made up only 7% of the total each!

As you can imagine, quality of life suffered after falls as well. A utility score based on the EQ-5D, a validated quality of life score, was lower in fall victims. Even after 9 months, this score did not return to baseline. About 70% of elders who were admitted after their falls described mobility problems and 64% had problems with their usual activities. Over a quarter expressed problems with anxiety or depression.

Bottom line: An array of falls prevention programs are available. They need to be more aggressively implemented to reduce costs and improve the quality of life of our elders.

Reference: Social consequences of falls in the older population: injuries, healthcare costs, and long-term reduced quality of life.  J Trauma 71(3):748-753, 2011. 

Print Friendly, PDF & Email

Geriatric Week 3: Elderly Trauma And The Frailty Index

Worldwide, the population is aging. Currently in the US, about 1 in 8 people are considered elderly (age >= 65). In 15 years, this number is expected to double to 1 in 4.

But as every trauma professional knows, there are the elderly, and then there are the elderly. What do I mean by this? I’ve seen 50 year olds who look and act like they are 80, with a medication list 10 deep. And I’ve also seen 90 year olds who are still ballroom dancing with the ladies.

Can we tell these cohorts apart, and do we need to? Sure, you can apply the “eyeball” test, but it’s not always accurate. Well, there are a number of frailty indexes that have been developed that try to make this process a bit more objective. The trauma group in Tucson looked at frailty index as a predictor of hospital disposition to see if it could offer any assistance in discharge planning.

Here are the factoids:

  • 100 consecutive patients aged 65 or more were studied over a one year period at a Level I trauma center
  • Frailty was calculated using the Canadian Study of Health and Aging Frailty Index, using 50 of the demographic, comorbidity, medication, social history, activities of daily living, and general mood variables
  • Overall, patients had moderate injury with average ISS 14, AIS-Head 2, and GCS 3
  • 69% of patients had a favorable outcome (discharged to home or rehab) vs 31% unfavorable outcome (skilled nursing facility or death)
  • Frailty index was highly and significantly correlated with unfavorable outcome
  • Age 65 or more alone was not predictive of unfavorable outcome

Bottom line: Just the fact that a patient is older does not mean that they are more likely to do poorly. The frailty index (FI) used in this study includes 50 variables, which indicates how complex this concept is. This scale has been used in non-trauma patients, and is now validated for trauma. Although somewhat complicated due to the sheer number of variables, it appears that this tool may be valuable in predicting discharge disposition if applied soon after admission. And it also raises the interesting question of whether hospital interventions may be able to change a predicted unfavorable outcome into a favorable one.

Reference: Predicting hospital discharge disposition in geriatric trauma patients: is frailty the answer? J Trauma 76(1):196-200, 2014.

Print Friendly, PDF & Email

Rest vs Physical Activity After Mild Pediatric Concussion: Which Is Better?

One of the most common recommendations after a child or young adult sustains a mild TBI is to rest. And even better, brain rest. I’ve written about that topic several times over the years.

But what about physical rest? There is a large body of literature documenting the numerous mental and physical benefits of exercise. Couldn’t they also apply after concussive injury to the brain? A study published recently tried to determine if physical activity or lack of it after mild TBI was helpful in reducing the incidence of post-concussive symptoms.

This was a planned analysis of prospectively collected data from nine research network hospital emergency departments in Canada. Children from age 5 through 17 were enrolled if they had received a concussion within 48 hours of the ED visit, as defined by the 2012 Zurich consensus. They were excluded if they had a positive head CT, GCS < 14, or pre-existing cognitive deficits.

Initial research data was collected during the ED visit, and followup phone calls were made by the research team at 7 and 28 days. They asked about self-reported level of physical activity on day 7, and post-concussive symptoms and their change over time on days 7 and 28.

Here are the factoids:

  • Of 3063 patients enrolled, 84% completed the ED assessment. 171 were excluded because they could not be contacted for the activity assessment on day 7.
  • Post-concussive symptoms were present in 30% of these children overall
  • 70% participated in physical activity during the first week: 32% light aerobic, 9% sport-specific, 6% non-contact drills, 4% full-contact practice, and 18% full competition (ignoring doctor’s orders?)
  • Overall, early activity was associated with a lower risk of post-concussive symptoms (25% vs 44%)
  • In patients who were symptomatic at day 7, symptoms were decreased at 28 days in patients who engaged in light aerobic activity, moderate activity, and even full-contact activity

Bottom line: This was a well designed study, but obviously with a number of limitations. Physical activity was self-reported, there may have been other factors that could not be controlled, and the study did not inquire about activity between days 7 and 28.

But this study appears to suggest that, like in most other areas, exercise is good. Even for the brain recovering from a concussion. Obviously, a really good randomized study would be the gold standard, but I doubt that will be done anytime soon. Trauma professionals may want to consider a cautious return to light to moderate activity as soon as the child feels well enough. But keep in mind that, in general, the onset of fatigue is a good indicator that it is time to stop activity and rest. And full contact should probably be avoided, especially because of the risk of re-injury.

Related posts:

Reference: Association between early participation in physical activity following acute concussion and persistent postconcussive symptoms in children and adolescents. JAMA 316(23):2504-2514, 2016.

Print Friendly, PDF & Email

EAST 2017 #12: Revaccination Compliance After Splenectomy

The incidence of overwhelming post-splenectomy sepsis, and the need and effectiveness for vaccination after splenectomy is still subject to debate. However, the administration of three vaccines to protect against encapsulated bacteria is a standard of care. For decades, this was a one time thing and the vaccines were usually given before the spelenctomized trauma patient was discharged from the hospital.

Then several years ago, the CDC updated their recommendations to include a booster dose of 23-valent penumococcal vaccine. Trauma professionals have inconsistently advised their patients about this dose, and patients have not reliably sought their booster.

Researchers at Christiana Care in Delaware looked at this potential problem by identifying all of their trauma splenectomy patients over a 10 year period. They were interviewed by phone to determine their understanding of the asplenic state and the need for booster vaccination.

Here are the factoids:

  • During the 10 year period, 267 trauma splenectomies were performed
  • 196 survived, but only 52 agreed to participate (? – see below)
  • Although all patients received vaccines before discharge (!), only 23% were aware that they had
  • Only about half of patients were aware that they may be at risk for infectious complications
  • Only 19% understood they would require a booster dose, and 22% had actually received one (?? – see below)

Bottom line: Although we still aren’t sure how important these vaccines are, vaccination is the standard of care. This study, although a little confusing, shows that we are falling down in educating our patients about the impact of their splenectomy (surgical or via embolization). And it’s difficult for anyone to remember to get a booster shot. Are you up to date on your tetanus vaccination?

This abstract shows us that we need to counsel these patients prior to discharge regarding their at-risk condition. We also need to make sure they (and their primary care provider) are aware that they need to get a pneumococcal booster five years down the road.

News flash! Take a look at page 3 of the CDC recommendations (download here) to see the official recommendations regarding pneumococcal vaccination. It is recommended that PCV-13 vaccine (Prevnar 13) be given first, then the 23-valent vaccine (Pneumovax) 8 weeks later! This complicates things a bit, since both pneumococcal vaccines cannot be given while the patient is still in the hospital. This will reduce the likelihood that patients will get their second pneumococcal vaccine.

Questions and comments for the authors/presenters:

  1. The number of patients is off by one. There were 267 splenectomy patients, 49 died in the hospital and 23 after discharge. 267-49-23=195, not 196.
  2. Only 52 of this 195 agreed to participate. You were able to find all 195? It seems that some of these 143 patients just could not be located.
  3. Please clarify the numbers in my last bullet point. Of the 52 patients, only 9 were aware of the revaccination requirement, and only 1 got it?
  4. This is important work. What have you done to improve these numbers at your hospital?

Click here to go the the EAST 2017 page to see comments on other abstracts.

Related posts:

Reference: Revaccination compliance after trauma splenectomy: a call for improvement. Poster #31, EAST 2017.

Print Friendly, PDF & Email

EAST 2017 #11: Use of Incompatible (Type A) Plasma For Massive Transfusion

Type AB plasma is considered “universal donor” plasma, as it contains no antibodies to red cells with either A or B antigens on their surface. Unfortunately, only about 4% of the US population have this blood type and can provide the product. Due to this shortage, some trauma centers have decided to use Type A plasma initially for massive transfusion, and switch to type specific plasma once patient blood has been typed and screened.

This works, since only about 13% of the population have red cells with B antigens on the surface. But are there any adverse effects in those patients who receive potentially incompatible plasma? The EAST Multicenter Study group performed a retrospective study using trauma registry and blood bank data from 5 trauma centers. They looked at adult patients who received plasma as part of the massive transfusion protocol (MTP) over a 4+ year period. Incompatible type A plasma transfusion was defined to occur if a patient had either Type B or AB blood.

Here are the factoids:

  • There were a total of 1212 patients in the study; 93% were compatible and 7% were incompatible type A initial transfusions
  • The usual trauma demographics were seen (young, male) and the average ISS was 25 (they triggered an MTP, remember?)
  • By chance, the incompatible group had a slightly higher ISS (29) and penetrating injury rate (45% vs 33%)
  • The incompatible group received significantly more plasma during the first 4 hours and during the first day
  • There was no difference in mortality sepsis, ARDS, thromboembolic events, or renal failure
  • Regression analysis showed that incompatible plasma was not a predictor of mortality or morbidity
  • There was one hemolytic reaction and one occurrence of TRALI, both in the compatible group

Bottom line: This is the largest study around on the topic, and it does not show any significant problems (at least the ones that were studied) with giving incompatible plasma in acute trauma. How can this be, you ask? Remember, only the first one or two units (the first MTP pack) is potentially incompatible. Hopefully, by the time the second pack is delivered, the blood has been typed. And these patients are potentially receiving multiple units of typed plasma after the initial transfusion which dilutes the incompatible, and multiple transfusions overall which may blunt their immune response. 

This is an important paper that all centers should consider as they update their massive transfusion protocols!

Questions and comments for the authors/presenters:

  1. The abstract states that 5 centers participated, but the tables only list 4. Please explain this.
  2. It is not stated explicitly whether all centers used type A plasma initially. Is this the case?
  3. This is important work! Have any other centers converted to initial use of type A plasma?

Click here to go the the EAST 2017 page to see comments on other abstracts.

Related posts:

Reference: Use of incompatible type A plasma transfusion in patients requiring massive transfusion protocol: outcomes of an EAST multicenter study. Paper #16, EAST 2017.

Print Friendly, PDF & Email