Category Archives: Complications

AAST 2019 #6: DOACs Part 3!

A little further down the direct oral anticoagulants (DOACs) rabbit hole please? The abstract reviewed in my last post suggested that elderly patients taking these agents actually do better than those on warfarin. So if that’s the case, do we need to be so attentive to getting followup CT scans on these patients to ensure that nothing new and unexpected is happening?

The trauma group at UCSF – East Bay performed a multi-center review of the experience at “multiple” Level I trauma centers over a three year period. They included anticoagulated patients with blunt trauma who had a negative initial head CT. Patients taking only an anti-platelet agent or a non-oral anticoagulant were excluded.  They analyzed the data for new, delayed intracranial hemorrhage, use of reversal agents, neurosurgical intervention, readmission, and death.

Here are the factoids:

  • A total of 739 records were studied: 409 on warfarin and 330 on a DOAC. Average age was 79, and half were male.
  • Repeat head CT was performed only half the time (!)
  • Delayed hemorrhage was noted in 4% of warfarin cases (9 of 224) and 2.5% of DOAC cases (4 of 159)
  • There were no interventions or deaths in the DOAC group with followup CT, or in those who did not have the repeat scan
  • There was 1 intervention in the warfarin group and two deaths attributed to TBI
  • Reversal agents were administered to 2% of DOAC patients and 14% of warfarin patients
  • The authors performed a regression analysis that showed the two strong associations with delayed hemorrhage were male sex and AIS head > 2 (!)

The authors concluded that this “largest study” suggests that DOACs “may” have a better safety profile compared to warfarin and repeat head CT is not indicated.

Now, hold on a minute!

Rule #1: No single published paper should ever change your practice. They need to be confirmed by other, hopefully better work.

Rule #2: No single abstract should make you even think about changing your practice! These are preliminary works that always need more detail, more effort, and a lot more thought. They are meant to telegraph what the authors are working on and to raise interesting questions from the audience. They should stimulate others to try to replicate and improve upon the work. In general, if something looks really good as an abstract, the next step is successful publication. This means that peers have reviewed the data and agree that it looks promising. But then it should take several years of work by the original authors and others to prove or refute the claims.

This study was small in the first place, and became smaller because half did not have repeat CT scans. The only statistically significant result was that we confirmed that the providers were not very good about getting followup scans. Just because they didn’t do it doesn’t mean it’s not indicated, especially given the nature of the data and the very small numbers.

I consider this another very small piece in the puzzle that suggests DOACs are not as evil as warfarin. There are several of these low power studies floating around right now. But we need to hunker down and really do a big study right so we can start to get a clearer picture of what we should do. For now, it’s best to treat all anticoagulants and anti-platelet agents as evil and err on the side of overtreating.

Here are my comments and questions for the presenter and authors:

  • Why was the followup head CT rate so poor? Was this a “however they like to do it” thing, was there a protocol, did the trauma centers just not believe that DOACs could be bad?
  • What were the guidelines for reversal? If the initial head CT was normal, why ever reverse? This suggests that participating centers could do whatever they wanted based on unspecified criteria.
  • Was the regression analysis helpful in any way? Being male and having a mild TBI seem rather nonspecific factors and wouldn’t help select patients for reversal or repeat scan.
  • Please provide more information on the warfarin intervention and deaths.
  • Isn’t the title of this abstract rather bold for the quality of the results presented?

I’m sure there will be some lively debate at the end of this presentation!

Reference: Repeat CT head scan is not indicated in trauma patients taking novel anticoagulation: a multi-institutional study. AAST 2019, Oral Abstract #66.

Print Friendly, PDF & Email

AAST 2019 #5: DOACs Part 1

A short while ago I wrote about the proper nomenclature of the new or novel oral anticoagulant medications that are replacing warfarin in patients with atrial fibrillation (click here for details). Cut to the chase, the consensus seems to be that they should be called direct oral anticoagulants or DOACs.

These medications strike fear into the average trauma professional, primarily because there is no easy way to reverse them as there is for warfarin. We are finally accumulating enough experience with them to start to see the bigger picture with respect to complications and mortality. Today, I’ll begin the discussion with a series of three abstracts regarding these drugs.

The AAST conducted a multicenter, prospective, observational study that collected DOAC trauma patient information from 15 centers. They reviewed four years of data, specifically examining the use of reversal agents and mortality.

Here are the factoids:

  • A total of 606 patients were enrolled. They were generally elderly with an average age of 75.
  • Most were taking one of the Factor Xa inhibitors (apixaban, rivaroxaban, edoxiban), while just 8% were taking the direct thrombin inhibitor dabigatran.
  • Only 1% of patients received a reversal agent (prothrombin complex concentrate (PCC) 87%, Praxbind (12%), and Andexxa (1%)
  • Those receiving reversal tended to be older than the average and had more severe head injuries
  • Patients who were reversed with PCC had no change in mortality using a regression model
  • Patients reversed with Praxbind or Andexxa had a 15x higher probability of mortality

The author’s conclusions merely restated their results.

This is fascinating information. Unfortunately, this study was not designed to provide a comparison with patients taking warfarin. However, my next two abstract reviews will cover this very topic. 

There are two interesting tidbits here. First, reversal was only carried out in about one in eight patients. Why is this? No protocol? No product? Too pricey? Patients not hurt badly enough? And how would that be judged anyway?

The second is that reversal with PCC seems to be benign, but use of one of the specifically designed reversal agents really jacked up mortality. These agents (Praxbind and Andexxa) are very expensive ($3.5K and $50K respectively). Furthermore, there are no studies anywhere that show their effectiveness. This one actually seems to show they might be dangerous.

The devil is in the details. Here are my questions for the presenter and authors:

  • Were there any guidelines for reversal? This is key because if not, the statistics just describe “how we do it.” Yes, you can tease out higher ISS or AIS head as potential reasons, but were there directions regarding this built into the study protocol?
  • Do you have any data on the success rates of PCC reversal? Were there provisions to demonstrate lesion stability vs progression after administration?
  • Do you have an impression of why the tailored reversal agents seemed to be so deadly? Were they used as a last resort due to cost. Did the centers have a hard time getting it or authorizing its use?

This abstract could be a gold mine!

Reference: The AAST prospective, observational, multicenter study investigating the initial experience with reversal ofnovel oral anticoagulants in trauma patients. AAST 2019, Oral Paper 58.

Print Friendly, PDF & Email

AAST 2019 #2: Predicting Abdominal Operation After Blunt Trauma – The RAPTOR Score

Patients with blunt abdominal injury, particularly those with seat belt signs, can be diagnostically very challenging. If the patient is stable and does not have peritonitis, CT scan is typically the first stop after the trauma resuscitation room. As many trauma professionals know, the radiographic findings can be subtle and/or not very convincing.

The trauma group at the University of Tennessee in Memphis sought to identify specific findings that might help us better identify patients that will need laparotomy. They retrospectively identified all their mesenteric injuries over a five-year period. A single blinded radiologist (is this an oxymoron or not?) reviewed all 151 patient images who underwent laparotomy, looking for predictors of bowel or mesenteric injury.  All of the predictors were then converted into a scoring system called RAPTOR (radiographic predictors of therapeutic operative intervention; kind of a stretch?). These predictors were then subjected to multivariate regression analyses to try to tease out if there were any independent predictors of injury.

Here are the factoids:

  • A total of 151 patients were identified over the 5 year period; 114 underwent laparotomy
  • Of the 114 operated patients, two thirds underwent a therapeutic laparotomy and the other third were nontherapeutic
  • There no missed injuries in the non-operated patients
  • The components of the RAPTOR score were culled from all the potential findings, and were determined to be
    • Multifocal hematoma
    • Acute arterial extravasation
    • Bowel wall hematoma
    • Bowel devascularization
    • Fecalization (of what??)
    • Free air
    • Fat pad injury (??)
  • Linear regression then showed that only three of these, extravasation, bowel devascularization, and fat pad injury to be independent predictors of injury
  • If three or more RAPTOR variables were present, then the sensitivity, specificity, and positive predictive values for injury were 67%, 85%, and 86%, and an area under the receiver operating characteristic curve (AUROC) of 0.91

The authors concluded that the RAPTOR score provided a simplified approach to detect patients who might benefit from early laparotomy and not serial abdominal exams. They go further and say it could potentially be an invaluable tool when patients don’t have clear indications for operation.

It looks like there are two things going on here at the same time. First, a new potential scoring system is being piloted. And second, a regression analysis is being used to examine the data as well. 

But first, let’s back up to the beginning. This is a retrospective study, with a relatively small size. This makes it far harder to ensure that the results will be significant, or at least meaningful. Use of a single radiologist can also be problematic, especially since many of the CT findings with this mechanism of injury are subtle. 

The reported performance of the RAPTOR score is a bit weak. The listed statistics show that it accurately identified only two thirds of those who needed an operation and 85% of those who didn’t. The AUROC for the regression is very good, though. Could a good old-fashioned serial exam scenario be better?

Bottom line: It will be interesting to hear the background on RAPTOR vs regression, and find our how the authors will use or are using these tools.

Here are my questions for the presenter and authors:

  • Why did you decide to create a scoring system that uses a set of variables that may be dependent on each other? Isn’t the regression equation better?
  • Has this information changed your practice? It seems that the two of the three regression variables are fairly obvious reasons to operate (active extravasation and devascularization). Do you really need the rest?
  • Has this study helped you decrease the non-therapeutic laparotomy rate for blunt abdominal injury?
  • And please define fecalization and fat pad injury!

I’m looking forward to hearing this presentation!



Print Friendly, PDF & Email

Trocar Chest Tubes Or Blunt Technique? Part 2

In my last post on chest tube insertion technique, I reviewed a paper that compared chest tube insertion complications using two different trocar tips, blunt plastic and sharp metal. The sharp tip tubes caused more complications, although the study was weakened by the fact that the physicians inserting the tubes were complete newbies.

Today, I’ll discuss what the authors call a “best evidence topic” that reviewed the safety of the trocar technique. It is similar to a meta-analysis of available literature that attempts to reach a conclusion regarding this type of tube insertion. A literature search from 1946 to 2013 was conducted seeking to pull all papers on trocar chest tube insertion techniqes. A total of 258 papers were identified, but on closer inspection only 7 were identified that “provided the best evidence to answer the question.”

Here are the factoids from some of these papers:

  • Tube malposition occurred significantly more often in a series of 106 trocar tubes inserted into 75 ICU patients
  • In trocar tubes inserted for trauma, CT showed malplacement in 29% vs 19% with non-trocar tubes [This latter number seems very high to me!]
  • A retrospective study of 1249 patients resulted in the trocar technique being abandoned due to severe lung and stomach injuries
  • Use of trocar technique was associated with a significantly higher incidence of re-expansion pulmonary edema in 92 patients with spontaneous pneumothorax
  • A poorly controlled prospective study showed 23 complications with trocar technique and none with blunt dissection. The denominator could not be determined.

Bottom line: Overall, the literature is just not good enough to answer this question. But it does provide some suggestions.

  • Trocar insertion can be done well in experienced hands. Cardiac surgeons use these all the time, although sometimes they have the benefit of already being in the chest so they can visualize the point of entry and control the tip.
  • Any chest tube insertion can go awry.  It’s very important to learn proper technique, and take care to apply it faithfully, even in emergency situations.
  • If you really like trocars and want to improve insertion safety, start with the blunt dissection technique first, sweep a finger inside the chest to ensure there are no adhesions, then insert the trocar tube to guide it into position. Please note that I do not believe that we can control the tube once the instrument (trocar or clamp) are removed from the chest. And the tube will work fine just about anywhere it ends up (unless that’s the spleen).
  • Newbies should be supervised carefully and learn blunt insertion technique first. Be mindful that it is still possible to pass the insertion clamp into the same structures as a trocar if you are not careful. My practice is to place my fingers about 2 cm from the tip of the clamp as I push it through the pleura. If the pleura gives way more easily than anticipated, by fingers will keep the clamp from going too far into the chest. 
  • Always mark your insertion spot before prepping. This will generally be lateral to the nipple in men, so always prep the nipple into your field as a landmark.
  • Always be careful!

Reference: Is the trocar technique for tube thoracostomy safe in the current era? Interactive CV and thoracic surg 19:125-128, 2014.

Print Friendly, PDF & Email

Trocar Chest Tubes Or Blunt Technique? Part 1

This is an old question: what is the best way to insert a chest tube? There are several techniques available to us:

  • Blunt dissection and insertion
  • Trocar with a blunt tip (plastic stylet)
  • Trocar with a sharp tip (metal stylet)
  • Seldinger technique for small tubes

Typically, when there are multiple ways to do a thing, then there is no clear choice as to which is better. It then becomes a personal choice, or one driven by the financial considerations of the equipment used, and demonstrates the need for a practice guideline.

There are very few good papers out there that critically compare any of these techniques. Today, I’ll review one cadaver study and tomorrow I’ll tackle one “best evidence” paper that attempt to answer it.

A group in Vienna, Austria performed a cadaver study comparing the use of the two types of trocar tubes:

The top tube is the sharp trocar type, the bottom is the blunt trocar.

The study engaged twenty emergency medicine residents who had little, if any, experience placing chest tubes. Each placed 10 chest tubes (5 of each type) in fresh cadavers after undergoing a one-hour standardized lecture on anatomy, technique, and complications. The authors tabulated insertion times, as well as complication and success rate based on anatomic dissection.

Tube type was randomly assigned for each attempt by each resident. One blunt insertion and one sharp insertion were performed on opposite sides of a cadaver each month for the trainees. Over a period of 5 months, each resident performed 10 total insertions.

Here are the factoids:

  • Mean time to insertion for blunt vs sharp tips was the same, about 60 seconds
  • Insertion time declined by about 20 seconds by the final attempt at 5 months
  • Accurate placement occurred in 94% of blunt tip tubes vs 86% of sharp tip tubes
  • There were significantly more complications with the sharp tip (4 below diaphragm, 5 outside the thorax, 1 in the liver,  and 4 in the spleen) vs the blunt tip (2 below diaphragm, 2 extrathoracic, 2 in the liver, and 2 aborted due to damage to the tube)
  • BMI did not increase complications, but it did increase insertion time significantly

The authors concluded that there is a 6-14% complication rate that is operator related, and that the incidence of complications was increased with the use of a sharp tip tube. They warn against the use of these tubes.

Bottom line: This is certainly an interesting study. The insertion numbers are sort of reasonable, and the use of fresh cadavers is okay. They are not quite as realistic as real living people, but close. The biggest drawback was that they used chest tube newbies, most of whom had never inserted a tube. And they were placed in the unrealistic setting where they had to attend training and watch a video, then insert two tubes per month without coaching or supervision. This is not how we do it in the real world. 

I was impressed with what I consider the high number of complications. I don’t typically see that many, although I work at a blunt dissection institution. However, it does show that any trocar style tube is probably more like a weapon in inexperienced hands. So perhaps, even with supervision, both sharp and blunt trocar types should be avoided in the teaching setting. Sure, blunt dissection may take a bit longer, but the tube is also less likely to end up somewhere it shouldn’t be.

Tomorrow: Review of a “best evidence” review from New York.

Reference: Evaluation of performance of two different chest tubes with either a sharp or a blunt tip for thoracostomy in 100 human cadavers. Scand J Trauma Resus Emerg Med 20:10, 2012.

Print Friendly, PDF & Email