All posts by The Trauma Pro

Why Did The Trauma Team Cut Off My Clothes?

The fifth highest priority taught in the ATLS course is exposure. This generally means getting the patient’s clothes off so any hidden injuries can be identified. Early in my career, I was called to see a patient who had a gunshot to the chest that had been missed because the consulting physician had neglected to cut off her bra. A small caliber wound was found under the elastic strap in her left anterior axillary line after a chest xray showed a bullet in mid-thorax.

The usual trauma activation routine is to cut off the clothes. There are several tips and tricks we use to do this quickly. And a number of commercial products are out there to make it even easier.

But do we really need to cut everyone’s clothes off? I’m not disputing the fact that it’s important to be able to examine every square inch. But do we need to destroy everything our patient is wearing? I once saw a sequined wedding dress cut off (it’s almost as bad as cutting off a down jacket).

The answer is no. The key concept here is patient safety. Can you safely remove the clothing in a less destructive way? For most victims of major blunt trauma, we worry a lot about the spine. Unfortunately, it’s just not possible to allow the patient to wriggle out of their clothes and protect their spine. The same goes for fractures; it may be too uncomfortable to remove clothing because of fracture movement so scissors are required.

Penetrating trauma is a bit different, and in many cases it’s a good idea to try to get the clothing off intact. Once again, if spinal injury is a consideration (gunshots only), the involved clothes should be cut off. A patient with a gunshot to the chest can probably have their pants safely and gently pulled off, but their shirt and coat must be cut.

The police forensic investigators like to have intact clothing, if possible. This is another good reason to try to remove clothing from penetrating injury victims without cutting. 

Bottom line: Think before you cut clothes! Major blunt trauma and bad injuries require scissors. Lesser energy blunt injury may allow some pieces of clothing to be removed in the usual method. Most penetrating injury does not require cutting. But if you must (for patient safety), avoid any holes in the fabric so forensics experts can do their job.

Blunt Duodenal Injury In Children

Blunt injury to hollow organs is rare in adults, but a little more common in children. This is due to their smaller muscle mass and the lack of protection by their more flexible skeleton. Duodenal injury is very rare, and most trauma professionals don’t see any during their career. As with many pediatric injuries, there has been a move toward nonoperative management in selected cases, and duodenal injury is no exception.

What we really need to know is, which child needs prompt operative treatment, and which ones can be treated without it? Children’s Hospital of Boston did a multicenter study of pediatric patients who underwent operation for their injury to try to tease out some answers about who needs surgery and what the consequences were.

A total of 16 children’s hospitals participated in this 4 ½ year study. Only 54 children had a duodenal injury, proven either by operation or autopsy. Some key points identified were:

  • The injury was very uncommon, with one child per hospital per year at best
  • 90% had tenderness or marks of some sort on their abdomen (seatbelt sign, handlebar mark, other contusions). 
  • Free air was not universal. Plain abdominal xray showed free air in 36% of cases, while CT showed it only 50% of the time. Free fluid was seen on CT in 100% of cases.
  • Contrast extravasation was uncommon, seen in 18% of patients.
  • Solid organ injuries were relatively common
  • Amylase was frequently elevated

Although laparoscopic exploration was attempted in about 12% of patients, it was universally converted to an open procedure when the injury was confirmed. TPN was used commonly in the postop period. Postop ileus was very common, but serious complications were rare (wound infection <10%, abscess 3%, fistula 4%). There were 2 deaths: one child presented in extremis, the other deteriorated one day after delayed recognition of the injury.

Bottom line: Be alert for this rare injury in children. Marks on the abdomen, particularly the epigastrium, should raise suspicion of a duodenal injury. The best imaging technique is the abdominal CT scan. Contrast is generally not helpful and not tolerated well by children. Duodenal hematoma can be managed nonoperatively. But any evidence of perforation (free fluid, air bubbles in the retroperitoneum, duodenal wall thickening, elevated serum amylase) should send the child to the OR. And laparotomy, not laparoscopy, is the way to go.

Related posts: Personal case – duodenal injury in a child

Reference: Operative blunt duodenal injury in children: a multi-institutional review. J Ped Surg 47(10):1833-1836, 2012.

DPL: A Dying Art?

Diagnostic peritoneal lavage (DPL) was invented by David Root at this hospital (Ancker Hospital, which then became St. Paul Ramsey, now Regions Hospital) in the 1960’s. It enjoyed its heyday during the 70’s and 80’s, when it was done hundreds of times per year at most major trauma hospitals. Now, we do it about 5 times per year. What happened?

As you know, DPL is a qualitative test. It gives a yes/no answer to the question “does this patient need an operation?” based on red and white blood cell counts. During the mid-1980s, CT scanning was introduced, which provides much more quantitative information about injuries in the abdominal cavity. The improved ability to diagnose abdominal injury, especially solid organ injury, has led to the demise of DPL.

Most solid organ injury results in some free blood in the peritoneal cavity. It doesn’t take much blood (10 cc of whole blood mixed with 1 liter of infused crystalloid) to exceed the threshold of 100,000 RBC per ml of aspirate that will send the surgeon off to the OR. Therefore, pretty much any liver or spleen laceration would have to be taken to the OR based on a DPL.

But we know that very few liver/spleen injuries actually need an operation. So DPL cannot be used, or the negative laparotomy rate for blunt trauma would escalate. The other downside to DPL is that it’s not possible to get all of the infused crystalloid back out of the abdomen. This leads to a confusing amount of free fluid seen on any CT scan done after a DPL.

So DPL is now down but not out. Some practical pointers:

  • DPL should be used primarily as a backup to an equivocal or unbelievable FAST exam in an unstable patient. An example would be a patient who is hypotensive, has a negative FAST and no other obvious bleeding sources.
  • Remember to insert a gastric tube and urinary catheter so the stomach and bladder are decompressed before the procedure. The easiest way to remember this is to tape these catheters to the DPL procedure tray.
  • A DPL is actually 2 procedures: peritoneal tap and lavage. Once the catheter is in, it should be aspirated. If 10cc of gross blood is returned, the test is positive and the patient needs to go immediately to OR.
  • For blunt trauma, the threshold for RBC per µl is 100,000. The threshold for WBC is 500 per µl. If particulate material or weird colors are seen (stool or bile), the test is also considered positive. Send the sample for cell counts only. Don’t send for any other assays (e.g. amylase). 
  • For penetrating trauma, the thresholds have never been well defined. A number around 25,000 RBC per µl probably provides the best balance between sensitivity and negative laparotomy rate.

Reference: Diagnostic peritoneal lavage. HD Root, CW Hauser, CR McKinley, JW LaFave, RP Mendiola Jr. Surgery 57(5):633-637, 1965.

Pigtail Catheters Instead Of Chest Tubes?

Traditionally, hemothorax and pneumothorax in trauma has been treated with chest tubes. I’ve previously written about some of the debate regarding using smaller tubes or catheters. A paper that will be presented at the EAST meeting in January looked at pain and failure rates using 14Fr pigtail catheters vs 28Fr chest tubes.

This was a relatively small, prospective study, and only 40 of 74 eligible patients were actually enrolled over 20 months at a Level I trauma center in the US. Pain was measured using a standard Visual Analog Scale, as was complication and failure rate, tube duration and hospital stay.

The following interesting findings were noted:

  • Chest wall pain was similar. This is expected because the underlying cause of the pneumothorax, most likely rib fractures, is unchanged.
  • Tube site pain was significantly less with the pigtail
  • The failure rate was the same (5-10%)
  • Complication rate was also the same (10%)
  • Time that the tube was in, and hospital stay was the same

Bottom line: There may be some benefit in terms of tube site pain when using a smaller catheter instead of a chest tube. But remember, this is a very small study, so be prepared for different results if you try it for your own trauma program. If you do choose to use a smaller tube or catheter, remember to do so only in patients with a pure pneumothorax. Clotted blood from a hemothorax will not be completely evacuated.

Related posts:

Reference: A prospective randomized study of 14-French pigtail catheters vs 28F chest tubes in patients with traumatic pneumothorax: impact on tube-site pain and failure rate. EAST Annual Surgical Assembly, Oral paper 12, 2013.

Why Do Trauma Patients Get Readmitted?

Readmission of any patient to the hospital is considered a quality indicator. Was the patient discharged too soon for some reason? Were there any missed or undertreated injuries? Information from the Medicare system in the US (remember, this represents an older age group than the usual trauma patient) indicates that 18% of patients are readmitted and 13% of these are potentially preventable.

A non-academic Level II trauma center in Indiana retrospectively reviewed their admissions and readmissions over a 3 year period and excluded patients who were readmitted on a planned basis (surgery), with a new injury, and those who died. This left about 5,000 patients for review. Of those, 98 were identified as unexpected readmissions. 

There were 6 major causes for readmission:

  • Wound (23) – cellulitis, abscess, thrombophlebitis. Two thirds required surgery, and 4 required amputation. All of these amputations were lower extremity procedures in obese or morbidly obese patients.
  • Abdominal (16) – ileus, missed injury, abscess. Five required a non-invasive procedure (mainly endoscopy). Only 2 required OR, and both were splenectomy for spleen infarction after angioembolization.
  • Pulmonary (7) – pneumonia, empyema, pneumothorax, effusion. Two patients required an invasive procedure (decortication, tube placement).
  • Thromboembolic (4) – DVT and PE.  Two patients were admitted with DVT, 2 with PE, and 1 needed surgery for a bleed due to anticoagulation.
  • CNS (21) –  mental status or peripheral neuro exam change. Eight had subdural hematomas that required drainage; 3 had spine fractures that failed nonoperative management. 
  • Hematoma (5) – enlargement of a pre-existing hematoma. Two required surgical drainage.

About 14% of readmissions were considered to be non-preventable by a single senior surgeon. Wound complications had the highest preventability and CNS changes the lowest. Half occurred prior to the first followup visit, which was typically scheduled 2-3 weeks after discharge. This prompted the authors to change their routine followup to 7 days. 

Bottom line: This retrospective study suffers from the usual weaknesses. However, it is an interesting glimpse into a practice with fewer than the usual number patients lost to followup. The readmission rate was 2%, which is pretty good. One in 7 were considered “preventable.” Wounds and pulmonary problems were the biggest contributors. I recommend that wound and pulmonary status be thoroughly assessed prior to discharge to bring this number down further. Personally, I would not change the routine followup date to 1 week, because most patients have far more complaints that are of little clinical importance than compared to 2 weeks after discharge.

Reference: Readmission of trauma patients in a nonacademic Level II trauma center. J Trauma 72(2):531-536, 2012.