All posts by The Trauma Pro

EAST 2019 #9: BENEFITS OF LEVEL IV TRAUMA CENTERS

Level I and II trauma centers are considered resource centers in that they have very robust capabilities in terms of surgical specialties and other services. But no trauma system is complete unless there are a sufficient number of potential feeder centers to ensure that quality trauma care is available outside the usual catchment area of the resource centers.

Level III trauma centers have physician staffed emergency departments, solid orthopedic coverage, and varying degrees of neurosurgical expertise (from none to equivalent to a Level I). Designated Level III centers can frequently keep a variety of patients that would otherwise require transfer.

But what about Level IV centers? They are not required to have any trauma-related surgical specialties or even physicians staffing the ED for designation purposes. The expectation is that nearly all patients will be transferred upstream to a resource trauma center. What is the advantage to pursuing designation if you are still not going to be able to keep patients?

One obvious reason is that injured patients will still be brought to your hospital, especially if it is located in a rural area. But surely there must be other reasons, right? The Penn Medicine group in Lancaster PA examined registry data from the Pennsylvania Trauma Systems Foundation over a six year period, focusing on hospitals that became new Level IV centers during that time interval. They looked at demographics, injury severity, mortality, and incidence of surgical intervention.

Here are the factoids:

  • Five hospitals underwent their initial accreditation as a Level IV center during the study period, and about 5000 total patient cases were reviewed during their pre- and post-designation periods
  • There were no differences in patient demographics or injury severity before or after designation
  • The transfer rate remained steady at 63% before and after
  • There was a trend toward decreased mortality (p = 0.09)
  • There was also a trend toward fewer surgical interventions before patient transfer, after designation

Here are some questions for the authors and presenter to consider in advance to help them prepare for audience questions:

  • I presume that the observation of trends and the failure to achieve statistical significance are due to the small sample of centers, correct? Unfortunately, this is not avoidable due to the number of hospitals entering into the system.
  • During your presentation, be sure to show the audience absolute numbers and basic statistics for your findings. Adjusted odds ratios are not as well understood by the average brain.
  • Do you have any suggestions for additional research that would help show a significant mortality advantage, since additional registry data will not be of help?
  • How do you expect that Level IV wannabes or existing Level IV centers will interpret this study?

I’m looking forward to hearing this presentation in person next week!

Reference: Early analysis of Level IV trauma centers within an organized trauma system. EAST 2019, Quick Shot paper #10.

EAST 2019 #8: How To Keep Neurotrauma Patients At Level III Trauma Centers

Hospitals that do not have neurosurgical coverage are faced with a dilemma when they receive a head-injured patient. Do they automatically transfer to a higher level trauma center, or do they keep the patient? This is especially poignant in rural areas, where transfer times may be lengthy. If a patient doesn’t really have any significant pathology, they are likely to be evaluated at the receiving Level I or II center, then discharged all the way back home. But if they are kept at the initial hospital, there may be a nagging doubt about what happens if…

Five years ago, the group at University of Arizona – Tucson published a simple brain injury classification system that was designed to predict which injuries were likely to progress and need neurosurgical intervention. They called this system BIG for Brain Injury Guidelines. It was created and validated on a group of nearly 4,000 patients over four years, and the results have been promising. Since then, BIG has been validated using small study groups (<405) in pediatric head injury, and at Level I and III trauma centers.

Here’s the guideline:

One of the Quick Shot presentations at next week’s EAST Annual Scientific Assembly is another validation study at a Level III center in Lake Havasu City, Arizona that introduces one small modification to the guidelines. Normally, BIG is calculated after CT of the head is complete. This modification entailed BIG calculation after anticoagulation was reversed. Patients with BIG scores of 1 or two after reversal was complete were kept at the Level III, and were managed by the trauma surgeons. All BIG 3 patients were transferred to a higher level center.

Four years of trauma registry data were analyzed. During the first two years, patients with any positive BIG score were transferred. During the final two years, only patients who scored BIG 3 after reversal were moved.

Here are the factoids:

  • During the pre-BIG period, there were 72 transfers: 36 BIG-1, 23 BIG-2, and 13 BIG-3
  • Once the protocol was in place, there were 119 patients identified, 52 patients with BIG-1 or 2 who were kept and 67 BIG-3 patients who were transferred
  • 13 patients in the post-BIG time frame were excluded
  • None of the BIG-1 or 2 patients required transfer later
  • 39 of the 52 BIG-1 or 2 patients had repeat scans, and none worsened clinically, with an average hospital length of stay of 1.4 days
  • Estimated helicopter transport savings was $1.9M based on an average charge of nearly $50K per flight

The authors concluded that modified BIG could be used to triage neurotrauma patients for transfer, but cautioned that good clinical judgment should also be applied.

Here are some questions for the authors and presenter to consider in advance to help them prepare for audience questions:

  • Are you satisfied that BIG is sufficiently validated? To date, there are only a handful of validation studies and they have relatively small numbers.
  • Why did you choose to modify the score to wait until anticoagulation? Couldn’t this nullify the validation studies?
  • Do you have any practice guidelines in place to ensure consistent care of the patients you now keep at your center? Do they allow you to manage common problems like subarachnoid hemorrhage or intraparenchymal hemorrhage?
  • How did you ensure that your surgeons, hospitalists, and nurses were comfortable managing these neurotrauma patients? Did you have any educational sessions or other training for things like GCS monitoring and neuro exam?
  • How do you reverse anticoagulation, and how long does that usually take? Plasma and prothrombin complex concentrate are commonly used, but with vastly different reversal times. And what do you do about aspirin, clopidogrel, and the novel oral anticoagulants?
  • Why did you exclude 13 patients once you started using BIG?
  • Has your hospital administration provided any numbers regarding increased revenue from this practice? Your hospital is larger (171 beds), but this type of information will be vital for small, critical access hospitals.

This is very interesting work, and highly applicable to rural trauma centers!

References:

  • Successful management of select radiographic intracranial injuries in a rural trauma center without neurosurgeon coverage using a modified brain injury guideline. EAST 2019, Quick Shot Paper #6.
  • The BIG (brain injury guidelines) project: Defining the management of traumatic brain injury by acute care surgeons. J Trauma 76(4):965-969, 2014.

EAST 2019 #7: Falls Screening In The Elderly

Falls in our elderly population are one of the largest issues facing trauma centers in the US, if not world-wide. The sheer numbers, along with the significant morbidity and mortality experienced by this group is mind boggling. ACS verified trauma centers are encouraged to have geriatric specific practice guidelines to assist in optimal care of these patients, and falls prevention programs are common among them.

The Centers for Disease Control is promoting a program called the Stopping Elderly Accidents, Deaths, and Injuries (STEADI) initiative. They provide a suite of tools and resources, and screening begins with a 12 point questionnaire (see links). This tool obviously takes a bit of time to administer, and time is precious. The research group at
Baystate Medical Center in Massachusetts postulated that giving the full screen may be a bit cumbersome.

They explored a possible simplification to the 12-point STEADI screen, reducing it to only 3 of the questions. They sought to determine whether this easier and more convenient screen might be as accurate as the full STEADI screen. They evaluated a group of 60 elderly patients use the abbreviated tool, and those who scored high were referred to a physical therapy for further assessment and intervention. The primary outcome was performance improvement on the Timed Up and Go test (TUG), a measure of the patient’s ability to get up from a chair, walk a fixed distance and back, then sit down again. Normal performance is < 12 seconds.

Here are the factoids:

  • The median age of the 60 study patients who were considered high risk was 77
  • Median TUG before interventions was 16 seconds
  • After physical therapy intervention, the time decreased significantly to 12.3 seconds

The authors concluded that the abbreviated screen could be used to effectively identify elderly patients at risk for falls.

Here are some questions for the authors and presenter to consider in advance to help them prepare for audience questions:

  • Show the audience the full STEADI questionnaire, and highlight the three questions used in your study. This was not specified in the abstract. Did the patients have to score positive on all three questions to qualify for intervention?
  • How much time difference is there in answering the full 12-question survey vs the abbreviated 3 question one? The full survey looks pretty simple to me.
  • Did you also administer the full screen to see the correlation with your subset of three questions? This could provide interesting information that could validate the brief screen. How many more receiving the full screen would have qualified for the intervention?
  • What exactly were the interventions that the therapists provided in PT? Were they the same for each patient? How do you think they improved the TUG score?
  • Did all 60 patients complete the program? Or were more enrolled and only 60 qualified for intervention?
  • Is the TUG score difference clinically significant? You showed statistical significance, but are these patients really less likely to fall? Did you collect any data of falls after completion of the intervention?

This is a timely and pertinent study. I look forward to hearing the nitty gritty at the conference.

Links:

  • The STEADI algorithm
  • The 12 point STEADI screen

Reference: Fall prevention initiative: A fall screening pilot study in the ambulatory setting. EAST 2019 Paper #21.

EAST 2019 #6: Trauma Prevention and Your Trauma Registry

Trauma centers verified by the American College of Surgeons (ACS) (and most states who perform their own designation visits) are required to engage in trauma prevention activities. Furthermore, ACS centers are required to provide prevention programs based on identified local needs. Frequently, trauma professionals see a pattern of injury in the patients they treat. This generally stimulates a search through their trauma registry. Reviewing registry data is the most direct way of identifying and confirming injury patters specific to the local population.

The next abstract for review describes the process and outcomes of such a project from a Level II center in Fort Walton Beach, Florida. They noted a pattern of diving injury and high cervical fractures. This was confirmed using 2016 registry data. Admitted patients were intensive resource users, with 71% requiring ICU admission and operative fixation, and nearly half requiring rehab admission upon discharge.

Based on this, they developed a “Think Before You Dive” program with posters, signs, swag (a custom koozie), a trifold brochure, and magnets with diving and water safety tips. Posters and flyers were provided to local business, and magnets were placed in hotel rooms in the area. One time-share company even placed a hard stop in their registration process so that visitors had to acknowledge the safety message.

What’s a koozie, you ask? I didn’t know the technical term for this, but here’s a picture:

Here are the factoids:

  • There was a reduction of 100% in cervical spine injuries, and 24% of all water-related incidents in the targeted area
  • All remaining diving/high-cord injuries came from outside the target area
  • It was estimated that costs were reduced by $1.2 million

As you can see, this is not the typical hard research paper usually provided at most scientific meetings. However, it is very important that this kind of information is presented, as it has the potential for impact on the other clinical research.

Here are some questions for the authors and presenter to consider in advance to help them prepare for audience questions:

  • How did you recognize the problem initially? Was it a pattern picked up by humans? Which ones (nurses, trauma physicians, therapists/rehab, others)?
  • Why did you think that your prevention approach would be effective?
  • Provide some details on how you convinced businesses to carry your message. Was there any resistance, and what were their arguments? How did you overcome it?
  • Show us the numbers. Although it may be difficult to show statistical differences in patient numbers, cost savings is important as well. Show the patient numbers pre- and post-intervention for the cluster area and outside of it.
  • Define how you arrived at your cost savings numbers. How do the previously published economic numbers relate to costs at your own center and those reported in this study?

I believe that this is important information, and will help many other centers properly design their own trauma prevention programs!

Reference: Using the trauma registry to guide your injury prevention programs. EAST 2019 Paper #18.

EAST 2019 #5: Safety Of Whole Blood

What goes around comes around. Fifty years ago, blood banks began fractionating whole blood into separate products so that specific component therapy could be administered. Over a relatively brief period of time, the switch to components became nearly complete, and whole blood was not available for civilian use. For decades, trauma professionals have had to treat our trauma patients losing whole blood, but having only components available to replace it. Unfortunately, taking blood apart and putting it back together just isn’t the same, as you can see below:

In recent years, there has been a significant movement to reintroduce whole blood. Many trauma centers are experimenting with it, and it seems we are having to relearn how to use it again. At last year’s EAST meeting, the US Army Institute of Surgical Research presented a paper that demonstrated improved survival in select severely injured patients. This year, an abstract from the University of Texas in Houston is being presented that explores the safety of giving whole blood.

This was a single-hospital study where cold-stored low titer type O whole blood (WB) was stocked in the center’s helicopters and emergency department. Components were also available. The center reviewed their 7 month experience with trauma patients who received either type of product. Their outcome variables were safety profile and transfusion reaction rates.

  • 161 patients received component therapy and 95 received WB during the study period
  • ISS was statistically similar, but the abbreviated injury score for chest was higher in the whole blood group (see first two bullet points below)
  • Whole blood patients were more markedly impaired in the prehospital setting (higher pulse and lactate, lower blood pressure)
  • Whole blood patients received fewer units of products after leaving the ED, which is an 80% reduction when matched for the usual variables (0 vs 3)
  • Mortality was the same in the two groups (26% WB vs 22% component)
  • There was only one transfusion reaction, and it occurred in the component group

The authors concluded that whole blood appeared to be a safe alternative to 1:1 component therapy, and was associated with a reduced need for post-ED transfusion.

  • How were patients selected to receive components vs whole blood? Or were they? This could potentially influence many of the variables you analyzed (vital signs, lab values). Be sure to explain how selection bias may have influenced your results.
  • Some of your variables are statistically similar (i.e. ISS) but clinically different, or vice versa (24 hour bilirubin, chest AIS). Be prepared to explain why these results are or are not meaningful.
  • What do the terms safety profile and impact mean in your objectives section. You mention transfusion reaction rate separately, so what other safety and impact factors were you measuring?
  • Once again, statistical power is a question. Did you do a power analysis? I worry that a difference of 1 transfusion reaction in 250 patients was used to call whole blood safe.
  • How do you know the decrease in post-ED transfusions was due to use of whole blood? Please make sure to summarize the resuscitation given to the two groups while they were in the ED. Did the component group receive fewer units in the ED, thus requiring more afterwards? And vice versa for the whole blood group. Did they get more enroute to the hospital and in the ED?

This was a very interesting abstract. I’m looking forward to hearing many more details when you present.

Reference: Safety profile and impact of low-titer group O blood for emergency use in trauma. EAST 2019 Paper #16.