All posts by TheTraumaPro

The July 2017 Trauma MedEd Newsletter Is Here!

Welcome to the current newsletter. This one is dedicated to all of you out there who receive incoming trauma patient transfers from other hospitals. Here’s the scoop on what’s inside:

  • Can Transfer Patients Actually Pay Their Bills?
  • EMS Documentation In Transfer Patients
  • Technology To Reduce Radiation Exposure
  • The Value Of Reinterpreting Outside CT Scans
  • Optimizing Feedback to Referring Hospitals

To download the current issue, just click here! Or copy this link into your browser: http://bit.ly/TME201707

I’ve also included a sample transfer feedback form so you don’t forget anything when you send the patient. There is also a link to a Word version so you can customize it for your center. The link is:
http://bit.ly/trauma-fb

To view and download back issues, just click here.

Newsletter

What Happens To Your Average Subarachnoid Hemorrhage?

Management of traumatic brain injury (TBI) is a common issue faced by trauma professionals. And isolated subarachnoid hemorrhage (SAH) is one of the more common presentations. In many centers, this diagnosis frequently results in admission to the hospital, neurosurgical consultation, and repeat imaging.

Is this too much care? We adopted a practice guideline nearly two years ago based on our own clinical experience that eliminated the last two. Patients were still admitted for neurologic monitoring for 16 hours. But is even this too much?

What we really need is a better understanding of the natural history of uncomplicated traumatic SAH. Well, a study from Sunnybrook and the University of Toronto does just that. They performed a 17 year meta-analysis of the literature on isolated SAH with mild TBI (GCS 13-15). They pared their initial literature search of nearly 2900 studies down to the usual few, 13 in this case. All but one were retrospective, of course, and they had the usual design flaws.

Here are the factoids:

  • How many patients eventually needed neurosurgical intervention?  0 (Well, almost zero. It was 0.0017%, to be exact.)
  • How many had progression of the SAH? About 6%
  • How many had neurologic deterioration? 0.75%, which included two  patients with increased headache and one with some confusion. Two developed intraparenchymal hemorrhage (one was on anticoagulants)
  • How many died? Only 1 died from neurologic causes, and that patient was anticoagulated at the time of injury.

Bottom line: It looks like we may be overdoing it for patients with isolated SAH and mild TBI. The natural history seems to be fairly benign, unless the patient is taking anticoagulants. The type of drug was not specified, so warfarin, aspirin, clopidogrel, and the newer anticoagulants should all be included.

Perhaps it’s time to update the our practice guidelines further. It looks like most of these simple, isolated SAH can be evaluated and released. However, if the GCS is 13 or 14, they should still be admitted for monitoring for a short period. And if on anticoagulants, admission with a repeat CT is in order.

Related posts:

Reference: The clinical significance of isolated traumatic subarachnoid hemorrhage in mild traumatic brain injury: A meta-analysis. J Trauma , published ahead of print, July 8 2017.

Routine CT After Operative Exploration For Penetrating Trauma

CT scans are commonly used to aid the workup of patients with blunt trauma. They are occasionally useful in penetrating trauma, specifically when penetration into a body cavity is uncertain and the patient has no hard signs that would send him or her immediately to the operating room.

Is there any role in operative penetrating trauma, after the patient has already been to the OR? The dogma has always been that the eyeballs of the surgeon in the OR are better than any other imaging modality. Really?

The surgical group at San Francisco General addressed this question by retrospectively reviewing 6 years of their operative penetrating injury registry data. They were interested in finding how many occult injuries (seen with CT but not by the surgeon) were found on a postop CT. A total of 225 patients who underwent operative management of penetrating abdomen or chest injury were included.

Here are the factoids:

  • Only 110 patients had a postop CT scan; 73 had scans within the first 24 hours, the other 37 were scanned later
  • Rationale for early scan was to investigate retroperitoneal injury in half of patients, but frequently no indication was given (41%)
  • Rationale for late scan was for workup of ileus in one third, or for evaluation of new or unexpected clinical problems
  • Occult injuries were found in about half of early CT patients (52%), and 22% of late CT patients
  • The most common occult injuries were fractures, GU issues, regraded solid organ injury, and unrecognized vascular injuries
  • Several management changes occurred, including

Bottom line: There appears to be a significant benefit to sending some penetrating injury patients to CT in the early postop period. Specifically, those with injury to the retroperitoneum, deep into the liver, near the spine, or with multiple and complicated injuries would benefit. Simple stabs and gunshots that stay away from these areas/structures probably do not need followup imaging. 

Rreference: Routine computed tomography after recent operative exploration for penetrating trauma: What injuries do we miss? J Trauma, published ahead of print, May 11, 2017.

Top 10 Worst Complications: #1 Nasocerebral Tube

Minor complications from nasogastric tube insertion occur relatively frequently. Emesis is fairly common when the gag reflex is stimulated by the tube in the back of the oropharynx. An infrequent but possibly fatal one is insertion through the cribriform plate. 

The cribriform plate is located directly posterior to the nares and is part of the ethmoid bone. It is very porous in nature and weaker than the surrounding portions of the ethmoid. It is easily fractured, and can be seen is association with basilar skull fractures. This is one source for rhinorrhea in patients with these fractures.

Cribriform fracture is a contraindication to unprotected insertion of a nasogastric tube. If you look at the sagittal section below, the plate lies directly behind the nares. When inserting the NG tube, we are usually taught to aim the tube straight back. Unfortunately, this aims it directly at the cribriform. If a fracture is present, it is possible that you may be inserting a nasocerebral tube!

Cribriform plate - sagittal section

The usual symptoms when this occurs consist of immediate neurologic deterioration to coma, and a unilateral or bilateral blown pupil. The tube must not be withdrawn, because it will cause significant injury to the base of the brain. A stat neurosurgical consultation must be obtained, and if the patient is salvageable, the tube must be withdrawn through a craniectomy.

To avoid this dreaded complication, identify patients at risk for cribriform injury. They are:

  • patients with signs of trauma from eyebrows to zygoma
  • comatose patients
  • patients with signs of basilar skull fracture (Battle’s sign, raccoon eyes, oto- or rhinorrhea)

If your patient is at risk, follow these guidelines:

  • first, does the patient really need a gastric tube?
  • if comatose, insert an orogastric tube
  • if awake, don’t put the tube in their mouth, as they will gag continuously. Instead, place a lubricated, curved nasal airway. Then lube up a slightly smaller Salem sump tube and pass it through the airway.

Nausea In The Trauma Bay: Gastric Tube vs Anti-Emetic Drugs?

Nausea and vomiting are common problems in trauma patients, particularly those in a trauma activation. Inciting factors include pain, full stomach from food eaten before the event or blood swallowed after, or reaction to pain medications. For years, trauma professionals reached for the lowly gastric tube to evacuate stomach contents to “solve” the problem.

But how many of you have seen a patient forcefully empty their stomach as soon as the tube touches the oropharynx? And of course, your patient is lying supine, so the vomitus goes straight up, then back down into their airway. And if their mental status is not quite right, they may aspirate, causing even bigger problems.

We’ve had anti-emetic medications for a long time, some more effective than others. Only recently have we begun to rely on these as a first line defense in the trauma resuscitation room. But do they work? Are they safer?

The University Medical Center Utrecht in the Netherlands looked at this problem. They changed their policy from inserting a gastric tube to administering anti-emetics at the beginning of 2014. They studied their experience for the 6 months before and 6 months after the policy change. They inserted an orogastric (OG) tube preferentially before the switch, and used ondansetron and/or metoclopramide after.

Here are the factoids:

  • A total of 1446 trauma patients were admitted during this period. After excluding patients who were intubated or did not complain of nausea, 453 were analyzed (30%)
  • 20% of patients who had an OG tube placed vomited vs only 3% receiving medication (significant)
  • After therapy, 14% of patients receiving an OG were still nauseated vs only 2% getting meds (also significant)
  • 3 patients vomited and aspirated after OG placement, and 1 developed a pneumonia. 2 patients became bradycardic and med administration, and one developed QT-prolongation

Bottom line: This is a relatively small, retrospective study. Furthermore, the choice of gastric tube route (oral) is a setup for gagging and vomiting. Nasogastric tubes are a bit less noxious, but can’t be inserted in all patients (see tomorrow’s post). Even so, the use of anti-emetics in trauma patients complaining of nausea seems like the kinder, gentler way to go. 

Which drug to use? Previous studies have shown that ondansetron 4mg is as effective as 8mg, and that this drug is about equally as effective as metoclopramide. There is also some evidence that giving both is more effective than just giving one.

Gastric tubes are still important, particularly in the comatose patient. But since these patients are at risk for cribriform plate injury, only the oral route should be used.

Reference: Analysis of two treatment modalities for the prevention of vomiting after trauma: orogastric tube or anti-emetics. Injury (accepted manuscript, in press) online 8 July 2017.