10 Things That Will Get You Sued – Part 1

Many trauma professionals believe that they can only be sued if they make a medical error and some harm occurs. Unfortunately, this is not entirely true. Yes, this is one obvious way to spark a suit or claim.

Unfortunately, it goes beyond that. Your patient may sue you if they even believe that they were harmed in some way, or think that something untoward happened while you were providing care. Here are the top 10 reasons for getting sued and my thoughts on each (in no particular order).

#1. “What we have here is a failure to communicate”

Your interpersonal skills are at least as important as your clinical skills! You may be a clinical prodigy, but if you are an asshole at the bedside, your patients will never appreciate your skills. You must be able to listen and empathize with your patient. Sit down, look at them eye to eye. Listen attentively. Don’t appear to be in a rush to get out of the room. You’d be surprised at how much more valuable information you will get and the relationship you create.

#2. “Work not documented is work not done”

This is my quote and it’s one of my favorites. Accurate, complete, timely, and legible documentation is a must! The legibility problem is fading with the widespread use of electronic health records (EHR, although this is creating new problems). Documentation, or lack thereof, will not get you sued. However, if you are involved in a suit or claim and your care is scrutinized, poor or missing documentation will make it impossible to plausibly contend that you did what you say you did.

It’s critical that you document every encounter thoroughly enough to be able to reconstruct what you were thinking and what you did. And providing a date and time is absolutely critical. This is especially important when the EHR timestamps everything you enter. Frequently, you will be documenting something somewhat after the fact. Always make sure that it’s not too far after the fact. Document as promptly as you can, and include the time that you were actually providing the service.

And never go back and try to “correct” your documentation, especially if the chart is being requested for inclusion in a suit or claim. If you believe there is an error, create an addendum and explain why the correction is necessary. If a suit or claim has been started, do not touch or open the chart without advice from your legal counsel.

Tune in for Part 2 in my next post!

Why Do Trauma Patients Get Readmitted?

Readmission of any patient to the hospital is considered a quality indicator. Was the patient discharged too soon for some reason? Were there any missed or undertreated injuries? Information from the Medicare system in the US (remember, this represents an older age group than the usual trauma patient) indicates that 18% of patients are readmitted and 13% of these are potentially preventable.

A non-academic Level II trauma center in Indiana retrospectively reviewed their admissions and readmissions over a 3 year period and excluded patients who were readmitted on a planned basis (surgery), with a new injury, and those who died. This left about 5,000 patients for review. Of those, 98 were identified as unexpected readmissions. 

There were 6 major causes for readmission:

  • Wound (23) – cellulitis, abscess, thrombophlebitis. Two thirds required surgery, and 4 required amputation. All of these amputations were lower extremity procedures in obese or morbidly obese patients.
  • Abdominal (16) – ileus, missed injury, abscess. Five required a non-invasive procedure (mainly endoscopy). Only 2 required OR, and both were splenectomy for spleen infarction after angioembolization.
  • Pulmonary (7) – pneumonia, empyema, pneumothorax, effusion. Two patients required an invasive procedure (decortication, tube placement).
  • Thromboembolic (4) – DVT and PE.  Two patients were admitted with DVT, 2 with PE, and 1 needed surgery for a bleed due to anticoagulation.
  • CNS (21) –  mental status or peripheral neuro exam change. Eight had subdural hematomas that required drainage; 3 had spine fractures that failed nonoperative management.
  • Hematoma (5) – enlargement of a pre-existing hematoma. Two required surgical drainage.

About 14% of readmissions were considered to be non-preventable by a single senior surgeon. Wound complications had the highest preventability and CNS changes the lowest. Half occurred prior to the first followup visit, which was typically scheduled 2-3 weeks after discharge. This prompted the authors to change their routine followup to 7 days.

Bottom line: This retrospective study suffers from the usual weaknesses. However, it is an interesting glimpse into a practice with fewer than the usual number patients lost to followup. The readmission rate was 2%, which is pretty good. One in 7 were considered “preventable.” Wounds and pulmonary problems were the biggest contributors. I recommend that wound and pulmonary status be thoroughly assessed prior to discharge to bring this number down further. Personally, I would not change the routine followup date to 1 week, because most patients have far more complaints that are of little clinical importance than compared to 2 weeks after discharge.

Reference: Readmission of trauma patients in a nonacademic Level II trauma center. J Trauma 72(2):531-536, 2012.

The VIP Syndrome In Healthcare (Very Important Person)

The VIP syndrome occurs in healthcare when a celebrity or other well-connected “important” person receives a level of care that the average person does not. This situation was first documented in a paper published in the 1960s, which noted that VIP patients have worse outcomes.

Who is a VIP? It may be a celebrity. A family member. Or even a colleague. Or the President of the United States. VIPs (or their healthcare providers) may expect to get special access to care and that the care will be of higher quality than that provided to others. Healthcare providers often grant this extra access through returned phone calls and preferential access to their clinic or office. The provider tries to provide a higher quality of care by ordering additional tests and involving more consultants. This idea ignores the fact that we already provide the best care we know how, and money or fame can’t buy any better.

Unfortunately, trying to provide better care sets up the VIP for a higher complication rate and a greater chance of death. Healthcare consists of several intertwined systems that generally have found their most efficient processes and lowest complication rates. Any disturbance in this equilibrium of tests, consultants, or nursing care moves this equilibrium away from its safety point.

Every test has its own set of possible complications. Each consultant feels compelled to add something to the evaluation, which usually means even more tests and more potential complications. Once too many consultants are involved, there is no “captain of the ship,” and care can become fragmented, even more inefficient, and dangerous.

How do we avoid the VIP Syndrome? First, explain these facts to the VIPs, making sure to impress upon them that requesting or receiving ” different ” care may be dangerous to their health. Explain the same things to all providers who will be involved in their care. Finally, do not stray from how you “normally” do things. Order the same tests you usually would, use the same consultants, and take control of all of their recommendations, trying to do things your usual way. This will provide the VIP with the best care possible, which is actually the same as what everybody else gets.

References:

  1. The VIP Syndrome”: A Clinical Study in Hospital Psychiatry. Weintraub, Journal of Mental and Nervous Disease, 138(2): 181-193, 1964.
  2. Caring for VIPs: nine principles. Cleve Clin J Med. 2011 Feb;78(2):90-4. doi: 10.3949/ccjm.78a.10113. PMID: 21285340.

MTP Activation Criteria For Pediatric Patients

Early resuscitation, particularly with blood products in patients with hemorrhage, is literally a lifesaver.  As each minute ticks by, survival slowly diminishes. To facilitate this, massive transfusion protocols (MTP) have been designed to rapidly deliver sizable quantities of blood products to the trauma resuscitation bay.

One of the recurring issues I see at trauma centers is the lack of a reliable way of activating the MTP. Many centers publish what I consider “psychic criteria.” These promote criteria that involve the amount of blood loss over four or twenty-four hours. Who even knows?

Delays in activating the MTP frequently occur because no one thinks about it when a critically injured patient arrives. All of the trauma professionals are busy with the patient and are rudely surprised when they ask for the first unit of blood.

Objective MTP activation criteria have been developed and are well-supported by the literature. The ABC score and the shock index are two of the more common methods. Both are based on observations made upon patient arrival (and possibly before if a prehospital report is received).

The ABC score uses four criteria:

  • Heart rate > 120
  • Systolic blood pressure < 90
  • FAST positive
  • Penetrating mechanism

If any two of these are present, there is a 50% chance that massive transfusion is warranted.

The Shock Index (SI) uses the initial vital signs to perform a quick and dirty calculation by dividing the heart rate by the systolic blood pressure.  A score greater than or equal to one predicts at least a 2x higher need for blood. Of the two, SI is more easily calculated and gives a marginally more accurate result.

But what about children? The ABC score was evaluated in pediatric patients and was found to be much less sensitive than in adults. Combining the ABC score with an age-adjusted Shock Index improved the accuracy only slightly. This was named the ABC-S score.

Several adult and pediatric trauma centers in the Denver area collaborated to test a new score using the ABC-S score in combination with serum lactate and base deficit. This was termed the ABC-D score. Clever.

Here are the factoids:

  • A retrospective review of patients aged 1-18 from a single trauma registry who had received a blood transfusion during their initial care
  • The study included 211 children, of whom 66 required massive transfusion
  • The three methods listed above were compared, and the ABC-D score was found to be the most predictive of MTP
  • ABC-D was 77% sensitive and 79% specific
  • The authors showed that the accuracy and balance between sensitivity and specificity improved for each point increase in the ABC-D score.
  • They concluded that ABC-D may be a useful tool to expedite the delivery of blood products during a trauma resuscitation.

Bottom line: Hmm. The system that they developed and the analysis of their experience appears to be sound. But unfortunately, it fails the practicality test. Here’s the sticking point. How long does it take to obtain that initial blood specimen, send it to your lab, and then return stat results to your trauma bay? Once you receive the results, you then activate the MTP and wait another 5-10 minutes for the first cooler to arrive!

That’s an awful long time to wait for blood while you watch a child hemorrhaging in front of you. So what to do? For now, use one of the existing systems to make a rapid decision. And always err on the side of activation. You can always send the blood back if you don’t need it!

Reference:  The ABC-D score improves the sensitivity in predicting need for massive transfusion in pediatric trauma patients. J Pediatr Surg. 2020 Feb;55(2):331-334. doi: 10.1016/j.jpedsurg.2019.10.008. Epub 2019 Nov 1. PMID: 31718872.

Updated: How To Detect Bucket Handle Injuries With CT

A bucket-handle injury is a relatively uncommon complication of blunt trauma to the abdomen. It only occurs in a few percent of patients, but is much more likely if they have a seat belt sign.  The basic pathology is that the bowel mesentery (small bowel of sigmoid colon) gets pulled away from the intestinal wall.

This injury is problematic because it may take a few days for the bowel itself to die and perforate. Patients with no other injuries could potentially be discharged from the hospital before they become overtly symptomatic, leading to delayed treatment.

Here’s an image from my personal collection with not one, but four bucket-handle injuries.

Typical patients with suspected blunt intestinal injury are observed with good serial exams and a daily WBC count. If this begins to rise after 24 hours, there is a reasonable chance that this injury is present.

CT scan has not really been that reliable in past studies. There may be some “dirty mesentery”, which is contused and has a hematoma within it. But without a more convincing exam, it is difficult to convince yourself to operate immediately on these patients.

A paper was published by a group of radiologists at Duke University. It appears to be a case report disguised as a descriptive paper. It looks like they picked a few known bucket-handle injuries from their institution and back-correlated them with CT findings.

The authors called out the usual culprits:

  • Fluid between loops of bowel
  • Active bleeding in the mesentery
  • Bowel wall perfusion defects

But they also noted that traumatic abdominal wall hernias were highly associated with seat belt sign as well. These are rare, but should bring intestinal injury to mind when seen.

With newer scanners, radiologists are better able to detect subtle areas of hypoperfusion as well. This is a fairly good indicator of injury, especially when adjacent bowel appears normally perfused. Here are two examples. The black arrows denote active extravasation, and the white ones an area of hypoperfusion.

The authors add bowel wall hypoperfusion as another finding that may point to a bucket-handle type injury.

A recent paper demonstrates the value of the current generation of high-quality scanners. A collection of California and Denver centers implemented a multicenter, prospective, observational study of patients with seat belt signs. The developed a list of positive findings, which included:

  • abdominal wall soft tissue contusion (radiographic seat belt sign)
  • free peritoneal fluid
  • bowel wall thickening
  • mesenteric stranding
  • mesenteric hematoma
  • bowel dilation
  • pneumatosis
  • pneumoperitoneum

A total of 754 patients with visible seat belt sign were enrolled and all went to CT scan. Any of the findings listed above were associated with a statistically significant likelihood of hollow viscus injury. The highest likelihood was associated with:

  • free peritoneal fluid – 42x more likely
  • bowel dilation – 21x
  • free fluid with no solid organ injury – 20x
  • bowel wall thickening – 19x
  • radiographic seat belt sign – 3x

Any of the radiographic findings strongly suggested that an injury could be present. However, if none were present, it was very unlikely that there were any significant injuries. The authors suggested that if such patients had no other injuries requiring hospitalization, they could potentially be discharged home. However, those patients should be counseled to return for evaluation immediately if they have any change in their abdominal or systemic status.

Bottom line: Some patients with a visible seat belt sign might be eligible for discharge from the ED if they have a totally negative abdominal CT and no other injuries requiring hospitalization. If they have any finding, they should be admitted for observation.

If your patient has an unconcerning exam and any of the findings listed above, perform serial exams and get a WBC the next morning. If the exam worsens, operate. If the WBC rises, consider laparoscopy to see if you need to make a bigger incision. And if you see any evidence of hypoperfused bowel, consider laparoscopy right away. 

References:

  • Excluding Hollow Viscus Injury for Abdominal Seat Belt Sign Using Computed Tomography. JAMA Surg. 2022 Sep 1;157(9):771-778. doi: 10.1001/jamasurg.2022.2770. PMID: 35830194; PMCID: PMC9280606.
  • CT findings of traumatic bucket-handle mesenteric injuries. Am J Radiol 209:W360-@364, 2017.
  • Multidetector CT of blunt abdominal trauma. Radiology 265(3):678–693, 2012.