Galleries

Obit: Max Harry Weil MD – Feb 9, 1927-July 29, 2011

Some people may recognize the name, but few can comprehend how much this man has done for the fields of trauma and critical care. Dr. Weil was a world-class clinician, teacher and researcher, and is believed to have coined the phrase “critical care medicine.”

Some of his many notable accomplishments:

  • In 1955, Dr. Weil created the first bedside shock cart, which is now known as the crash cart. 
  • In the late 1950’s, he and his colleagues recognized that some patients who were seriously ill or who had undergone major surgery had a propensity to die at night. He hit upon the concept that having an area for closer monitoring of these patients might allow for earlier recognition of acute problems and earlier intervention to correct them. This led to the creation of a four bed “shock ward.” This was the precursor to the first intensive care unit, which opened in 1968.
  • Introduced automated vital signs monitors in 1961.
  • Created the first computer assisted diagnosis tools in 1976.
  • Developed the STAT lab concept for rapid results in critically ill patients in 1981.

He was the co-inventor for 22 patented devices including:

  • Resuscitation blanket to protect medical personnel from electric shocks when defibrillating patients (2002).
  • Capnometer for assessing the severity of shock which can be placed in the upper GI tract or under the tongue (2001).
  • The Weil Mini Chest Compressor (2006)
  • An IV pump system (1981), detection for occlusion or infiltration (1985)
  • Osmotic pressure sensor (1977)
  • High frequency ventilator (1983)
  • A method for identifying cardiac rhythm even while CPR is in progress (2006)

Dr. Weil established the Institute for Critical Care Medicine in 1961, and worked there full-time after he left the University of Southern California. The institute trains physicians and engineers to discover and develop concepts and methods for more beneficial life-saving medical management. He stepped down as the president of the institute in 2006, but continued to work there full-time until two weeks before he died. 

The world has lost a true physician, teacher and innovator.

Link: Weil Institute for Critical Care Medicine

Algorithm For Nonoperative Management of Blunt Hepatic Trauma

Yesterday, I posted the Western Trauma Association’s algorithm for operative management of blunt liver trauma. Click here to view it. Today, I’m going to discuss their algorithm for nonoperative management. 

The algorithm is fairly self-explanatory. Click on the image above to read the annotated text for details on each step. Note: this requires full access to the Journal of Trauma.

Some key points in this algorithm:

  • Unstable patients need rapid identification of the cause. If the FAST is positive ©, then you need to go to the OR and use the operative algorithm.
  • CT scan is used for diagnosis in stable patients (F), but if a liver injury is seen and they become unstable at any time, go to the OR.
  • Contrast extravasation in a stable patient should prompt an evaluation and possible embolization by interventional radiography (G).
  • If complications develop (SIRS, abdominal pain, fever, jaundice), a repeat CT is indicated (K).
  • Abscesses and focal collections of bile may be managed by interventional radiology (L,M). Persistent bile leak may be decreased by ERCP and sphincterotomy (O).
  • Bile ascites or large hemoperitoneum may be managed using laparoscopy with drainage (N).

Reference: Western Trauma Association critical decisions in trauma: nonoperative management of adult blunt hepatic trauma. J Trauma. 67:1144–1148, 2009.

Algorithm For Operative Management of Blunt Hepatic Trauma

The Western Trauma Association has just published guidelines on decision-making when faced with hepatic injury in the OR. The algorithm is based on the available literature, which contains little prospective, randomized trial data. Nonetheless, it is a valuable tool that can be used to develop your own institution-specific protocol.

The algorithm is fairly self-explanatory. Click on the image above to read the annotated text for details on each step. Note: this requires full access to the Journal of Trauma.

Some key points in this algorithm:

  • Simple hemostatic maneuvers are usually successful with minor bleeding (A).
  • Sequential use of more involved maneuvers is indicated for major bleeding. In order, they are packing (B), Pringle maneuver (D), selective vessel ligation within the liver (E), and finally selective hepatic artery ligation (F).
  • Damage control laparotomy and interventional radiology are useful adjuncts.

Tomorrow I’ll write about the nonoperative blunt hepatic trauma algorithm. Click here to view it.

Reference: Western Trauma Association/Critical Decisions in Trauma: operative management of adult blunt hepatic trauma. J Trauma 71(1):1-5, 2011.

Today Is Post #300!

My post later today on operative management of blunt liver trauma will be number 300! I now have several thousand regular readers, I hope you’ve found my posts both helpful and informative. Please take a moment and leave a comment or suggestion below.

As always, I’m looking for requests for material. I want to be certain that I’m writing about things you want to know about.

Thanks for reading!

Is The Glasgow Coma Scale (GCS) Getting Too Old?

Traumatic brain injury (TBI) is one of the leading causes of death from trauma worldwide. The assessment of TBI was revolutionized in 1976 when the GCS scale was first introduced. Shortly after its introduction, it was found to be predictive of outcome after brain injury. But it does have some drawbacks: it is somewhat complicated, and interrater reliability is low.

Interestingly, a number of studies have shown that the motor component of GCS is nearly as accurate as the full score in predicting survival. Thus, the Simplified Motor Score (SMS) was introduced as a possible substitute for the GCS in 2007. It was found to be equivalent for predicting survival when applied in the ED.

SMS scoring:

  • Obeys commands = 2
  • Localizes pain = 1
  • Withdraws (or less) to pain = 0

So can this scale be validated in the field when applied by prehospital providers?

Nearly 10 years of data (almost 20,000 patients) from the Denver Health trauma registry was analyzed to attempt to validate SMS when used by EMS. Although the statistics were not perfect, they found that GCS and SMS were equivalent for predicting the presence of a brain injury, need for emergency intubation, need for neurosurgical intervention, and death. Interestingly, they found that both SMS and GCS were not quite as good at predicting overall outcomes as previously thought.

Bottom line: The simplified motor score is a simple system that has now been shown to be as accurate as GCS in predicting severity and outcome from head injury. To be clear, though, neither is a perfect system. They must still be combined with clinical and radiographic assessments to achieve the best accuracy. But SMS can and should be used both in-hospital and prehospital to get a quick assessment, and may help determine early intervention and need for activating the trauma team.

References:

  • Assessment of coma and impaired consciousness: a practical scale. Lancet 2:81-84, 1976.
  • Assessment and prognosis of coma after head injury. Acta Neurochir (Wien) 34:45-55, 1976.
  • Validation of the simplified motor score in the out-of-hospital setting for the prediction of outcomes after traumatic brain injury. Ann Emerg Med, in press, Aug 2011.