Tag Archives: x-ray

Imaging After Chest Tube: Why Do It?

More dogma, or is it actually useful? Any time a chest tube (tube thoracostomy) is inserted, we automatically order a chest x-ray. Even the ATLS course recommends obtaining an image after placement. But anything we do “automatically” is grounds for critical analysis to see if there is a valid reason for doing it.

A South African group looked at the utility of this practice retrospectively in 1004 of their patients. They place 1042 tubes. Here are the factoids:

  • Patients were included if they had at least one chest x-ray obtained after insertion
  • Patients were grouped as follows: Group A (10%) had the tube inserted on clinical grounds with no pre-insertion x-ray (e.g. tension pneumothorax). Group B (19%) had a chest x-ray before and had ongoing clinical concerns after insertion. Group C (71%) had a chest-xray before and no ongoing concerns.
  • 75% of injuries were penetrating (75% stab, 25% GSW), 25% were blunt
  • Group A (insertion with pre-x-ray): 9% had post-insertion findings that prompted a management change (kinked, not inserted far enough)
  • Group B (ongoing clinical concerns): 58% required a management change based on the post-x-ray. 33% were subcutaneous or not inserted far enough (!!)
  • Group C (no ongoing clinical concerns): 32 of 710 (5%) required a management change, usually because the tube was too deep

The authors concluded that if there are no clinical concerns (tube functioning, no clinical symptoms) after insertion, then a chest x-ray is not necessary.

Bottom line: But I disagree with the authors! Even with no obvious clinical concerns, the tube may not be functioning for a variety of reasons. Hopefully, this fact would then be discovered the next day when another x-ray is obtained. But this delays the usual progression toward removing the tube promptly by at least one day. It increases hospital stay, as well as the likelihood of infection or other hospital-associated complication. A chest x-ray is cheap compared to a day in the hospital, which would potentially happen in 5% of these patients. I recommend that we continue to obtain a simple one-view chest x-ray after tube insertion.

Tomorrow: Look at the chest x-ray. Is it a good chest tube?

The next day: What if you placed the chest tube in your resuscitation room and are planning to go to CT for additional imaging? Is it worthwhile getting a chest x-ray, or should you just check the tube with the CT scan?

Related posts:

The Impact Of Radiographic Image Sharing Systems On Trauma Transfers

There has been a big push to implement systems of trauma centers across the US, primarily at the state level. This move to get the right patient to the right hospital has resulted in an increased number of transfers, and rightly so. However, the referring hospital frequently performs some radiographic imaging before transfer.

So it is critical that both the patient and their imaging get to the receiving hospital for good continuity of care. Failure to do so results in re-imaging, additional exposure to radiation, delays in care, and potentially increased costs. Radiologists may be reluctant to read outside images because they generally will not get paid for it.

Unfortunately, there are lots of barriers to getting those images to the receiving trauma center. They may forget to send a disc. The disc may not work on the receiving hospital’s computers. A direct connection between PACS systems may be lacking, or may not work. In any case, patient care may suffer.

Cloud solutions using web-based software and an intermediary for image storage and delivery have been around for years. Their use is inconsistent around the US, mainly because they cost money. A group in Ohio looked at the impact of implementing one of these system on the incidence of cost of re-imaging at their Level I trauma center. Four years of patient transfer data were reviewed for imaging at the first hospital, re-imaging at the trauma center, and charges. The authors compared re-imaging rates before and after the availability of the cloud sharing system.

Here are the factoids:

  • 1,081 transfers occurred during the study period, and 639 (59%) had at least one CT prior to transfer
  • 345 repeat scans were performed on 222 patients (35%)
  • The most common repeats were head CT (32%) and cervical spine (23%)
  • The overall re-scan rate was significantly higher before the cloud service was available (38%) vs after (28%)
  • If patient data was available from the cloud service, the re-scan rate dropped to 23% (??!)
  • Mean hospital charges for re-CT dropped from $1046 to $589

Bottom line: This study is interesting, but could use some improvement. It is older data (2009-2012), from the early days of these cloud services. Centers were a little less facile using them, which may have contributed to some of the soft numbers above. And the use of charge data rather than costs is old-school. 

Re-scanning a quarter of the patients, even when cloud images were available, is just not acceptable. However, this paper does suggest that there are real benefits, as re-scan rates and (presumably) costs should decrease. Radiation exposure would definitely drop, too.

The key to making a cloud sharing system work, or any other system for that matter (VPN, optical discs, etc), is to make it part of your PI program. Every transfer in needs to be scrutinized, and if an image transfer issue is found, quick feedback to the referring hospital needs to occur to ensure that it doesn’t happen again.

Reference: Implementation of an image sharing system significantly reduced repeat computed tomographic imaging in a regional trauma system. J Trauma 80(1):51-56, 2016.