Tag Archives: imaging

Misleading Abstract Alert: Injuries Identified By Chest CT

Here is another one of those papers that have this nicely done abstract that arrives at what seems to be a reasonable conclusion. But then you sit back and think about it. And it’s no longer so reasonable.

This study seems like it should be a good one! It’s a multi-center trial involving data from ten level I trauma centers. The research infrastructure used to collect the data and the statistical analyses for this retrospective review were sound.

Here are the factoids:

  • Of nearly 15,000 patients with blunt chest trauma, about 6,000 (40%) underwent both chest x-ray and CT
  • 25% (1,454) of these patient had new injuries discovered by the CT
  • 954 were truly occult, only being found on the CT; the remaining 500 scans found more injuries than seen on chest x-ray
  • 202 patients had major interventions (chest tube, ventilator, surgery)
  • 343 had minor interventions (admission, extended observation)
  • Chest x-ray was not very good at detecting aortic or diaphragm injury (surprise)
  • 76% of the major interventions were chest tube insertions
  • 32% of of patients with new fractures seen were hospitalized for pain control
  • None of the odds ratios reported were statistically significant

Bottom line: What could possibly go wrong? Ten trauma centers. Six thousand patients. Lots of data points. There are two major issues. First, the primary outcome was a major intervention based on the chest CT. The problem with having so many participating centers is that it is hard to figure out why they performed the interventions. Are they saying that a pneumothorax or hemothorax that was invisible on chest x-ray required a chest tube? Based on whose judgment? Unfortunately, that is a big variable. The authors admit that they did not know whether “interventions based on chest CT were truly necessary or beneficial because we did not study patient outcomes” and that the decisions for intervention “were largely made by residents (usually) or fellows.”

And the secondary outcome was admission or extended observation based on the chest CT. Yet these admissions were primarily for pain management in patients with fractures. Did the patients develop additional pain due to irradiation, or was it there all along?

So adding a chest CT greatly increases the likelihood of doing additional procedures. And it is difficult to tell (from this study) if those procedures were truly necessary. But we know that they can certainly be dangerous. If you back out all of the potentially unnecessary chest tubes and the admissions for pain that should have been admitted anyway, this study demonstrates very little additional value from CT.

A well-crafted imaging guideline will help determine which patients really need CT to identify patients with those occult injuries that are dangerous enough that they can’t be missed. The authors even conclude that “a validated decision instrument to support clinical judgment is needed.”

Related posts:

Reference: Prevalence and clinical import of thoracic injury identified by chest computed tomography but not chesty radiography in blunt trauma: multicenter prospective cohort study. Annals Emerg Med 66(6):589-600, 2015.

When To Image The Aorta In Blunt Trauma

Blunt injury to the thoracic aorta is one of those potentially devastating ones that you (and your patient) can’t afford to miss. Quite a bit has been written about the findings and mechanisms. But how do you put it all together and decide when to order a screening CT?

There are a number of high risk findings associated with blunt aortic injury. Recognize that they are associated with the injury, but are still not very common. They are:

  • Fractures of the sternum or first rib
  • Wide mediastinum
  • Displacements of mediastinal structures (left mainstem down, trachea right, esophagus right)
  • Loss of the aortopulmonary window
  • Apical cap over the left lung

Here’s a sensible method for screening for blunt aortic injury, using CT scan:

  • Reasonable mechanism (fall from greater than 20 feet, pedestrian struck, motorcycle crash, car crash at “highway speed”) PLUS any one of the high risk findings above.
  • Extreme mechanism alone (e.g. car crash with closing velocity at greater than highway speed, torso crush)

Note on torso crush: I have seen three aortic injuries from torso crush in my career, one from a load of plywood falling onto the patient’s chest, one from dirt crushing someone when the trench they were digging collapsed, and one whose chest was run over by a car.

Outcome After Blunt Cerebrovascular Injury (BCVI)

Blunt injuries to the carotid and vertebral arteries are not as uncommon as we used to think. Unfortunately, there’s a lot of controversy surrounding everything about them: screening, management, and outcome. A paper just out detailed outcomes in a (relatively) large series of these patients. 

As expected with this rare injury, it’s a retrospective study. A busy Level I center identified 222 patients with 263 BCVIs over a 4 ½ year period. Twenty four died before discharge and 11 afterwards. Of the remaining patients, only 74 could be located and only 68 could be persuaded to complete an interview and evaluation of their functional status. Functional Independence and Functional Activity Measurements were assessed (FIM/FAM).

Pertinent findings were:

  • 8 patients suffered a stroke during their initial hospital stay (5 were present on arrival in the ED)
  • 5 additional patients had a stroke after discharge
  • Only 20% reached the maximum FIM/FAM scores, even including patients who did not have a stroke
  • Patients with stroke had a significantly lower FIM/FAM
  • There was no difference in FIM/FAM in patients with carotid vs vertebral injury

Bottom Line: Even though it is limited, this is one of the best studies we will see on BCVI because it’s an uncommon problem at most centers. The most important fact here is that the stroke rate was 19% despite discharge on antiplatelet or anticoagulant medications. And if stroke occurs, it causes significant functional problems, as expected. It’s critically important that this injury be screened and identified appropriately, then given appropriate prophylaxis. More on this tomorrow.

Related posts:

Reference: Functional outcomes following blunt cerebrovascular injury. J Trauma 74(4):955-960, 2013.

When To Image The Aorta In Blunt Trauma

Blunt injury to the thoracic aorta is one of those potentially devastating ones that you (and your patient) can’t afford to miss. Quite a bit has been written about the findings and mechanisms. But how do you put it all together and decide when to order a screening CT?

There are a number of high risk findings associated with blunt aortic injury. Recognize that they are associated with the injury, but are still not very common. They are:

  • Fractures of the sternum or first rib
  • Wide mediastinum
  • Displacements of mediastinal structures (left mainstem down, trachea right, esophagus right)
  • Loss of the aortopulmonary window
  • Apical cap over the left lung

Here’s a sensible method for screening for blunt aortic injury, using CT scan:

  • Reasonable mechanism (fall from greater than 20 feet, pedestrian struck, motorcycle crash, car crash at “highway speed”) PLUS any one of the high risk findings above.
  • Extreme mechanism alone (e.g. car crash with closing velocity at greater than highway speed, torso crush)

Note on torso crush: I have seen three aortic injuries from torso crush in my career, one from a load of plywood falling onto the patient’s chest, one from dirt crushing someone when the trench they were digging collapsed, and one whose chest was run over by a car.

Related post:

Results – Blunt Trauma Radiographic Imaging Protocol

In my previous post (click here to view) I discussed an imaging protocol that we developed and implemented last year. Today, I’ll detail what it has accomplished in our patients.

We looked at 229 patients who had their imaging performed according to the new protocol during a 3 month period and compared them to 215 patients who were imaged the previous year. Each scan administered to each body area (head, chest, abdomen/pelvis, c-spine, t-spine, l-spine, face, neck angio) were tabulated separately.

We found that the overall number of scans performed decreased significantly. We looked at our data and generated numbers per 100 patients. During the control period, we did 298 CT scans per 100 patients. This decreased to 271 during the study period. The number of head scans remained the same (82 per 100 patients during control, 85 per 100 during the study), as did the cervical spine scans (84 vs 86).

The biggest declines were seen in chest CT (53 per 100 control vs 33 per 100 study) and abdominal CT (57 vs 43).

We did see an increase in conventional xrays of the thoracic and lumbar spines to offset the absence of reformatted spine images that would have been generated from the chest and abdominal CT scans. We also noted small increases in CT of the head, cervical spine, and neck angio. This was likely due to better adherence to specific guidelines.

Bottom line: we believe that our work shows that careful adoption of well thought out guidelines can make a difference in practice and significantly decreases radiation exposure in our blunt trauma patients.

To read the post on this protocol, or to download it, click here.

Click here to download the Blunt Trauma Radiographic Imaging Protocol Worksheet